Skip to main content

Advertisement

Log in

Dielectric and energy storage properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with different aging temperature during the sol–gel process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Ba0.85Ca0.15Zr0.1Ti0.9O3 (referred to as BCZT) ceramics were fabricated by the sol–gel method with different aging temperatures. The structure, dielectric property, and the energy storage property were researched. Compared with the BCZT synthesized with the traditional solid-state reaction method, the samples prepared by the sol–gel method have obvious advantages in various performances. And a strong influence of aging temperature on the BCZT ceramics was observed. The suitable aging temperature can broaden the dielectric peak and decrease the Curie temperature. In addition, the optimal BCZT sample with the aging temperature of 60 °C exists a high permittivity (εr ~ 3141) and a low dielectric loss (tanδ ~ 0.012) at the frequency of 102 Hz. Moreover, the coercive field and remnant polarization of the BCZT were greatly decreased, contributing to slim hysteresis loops. Notably, the thinner P-E loop contributes a high energy storage efficiency (76.6%) at 40 kV/cm electric field which is much higher than the BCZT synthesized by the traditional solid-state reaction method. All measurements indicate the effect of aging temperature on ceramic properties is related to the grain size and the degree of diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data can be available from the corresponding author upon academic reasonable request.

References

  1. M. Peddigari, H. Palneedi, G.-T. Hwang et al., J. Korean Ceram. Soc. 56(1), 1 (2019)

    Article  CAS  Google Scholar 

  2. M. Zhang, H. Yang, Y. Lin et al., Energy Storage Mater. 45, 861 (2022)

    Article  Google Scholar 

  3. M. Fu, C. Li, B. Yang et al., J. Mater. Sci.: Mater. El. 30(20), 18950 (2019)

    CAS  Google Scholar 

  4. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92(8), 1719 (2009)

    Article  CAS  Google Scholar 

  5. Z. Shen, X. Wang, B. Luo et al., J. Mater. Chem. A 3(35), 18146 (2015)

    Article  CAS  Google Scholar 

  6. J. Li, F. Li, Z. Xu et al., Adv. Mater. 30(32), e1802155 (2018)

    Article  Google Scholar 

  7. F. Yan, H. Bai, G. Ge et al., Small 18(10), e2106515 (2022)

    Article  Google Scholar 

  8. F. Yan, Y. Shi, X. Zhou et al., Chem. Eng. J. 417, 127945 (2021)

    Article  CAS  Google Scholar 

  9. M. Zhang, H. Yang, Y. Yu et al., Chem. Eng. J. 425, 131415 (2021)

    Article  Google Scholar 

  10. S. Yadav, M. Chandra, R. Rawat et al., J. Phys.: Condens. Matter 32(44), 445402 (2020)

    CAS  Google Scholar 

  11. Q. Lou, X. Shi, X. Ruan et al., J. Am. Ceram. Soc. 101(8), 3597 (2018)

    Article  CAS  Google Scholar 

  12. R. Song, Y. Zhao, W. Li et al., Acta Mater. 181, 200 (2019)

    Article  CAS  Google Scholar 

  13. Q. Jin, Y.-P. Pu, C. Wang et al., Ceram. Int. 43, S232 (2017)

    Article  CAS  Google Scholar 

  14. F. Li, M. Zhou, J. Zhai et al., J. Eur. Ceram. Soc. 38(14), 4646 (2018)

    Article  CAS  Google Scholar 

  15. S. Praharaj, D. Rout, S.J.L. Kang et al., Mater. Lett. 184, 197 (2016)

    Article  CAS  Google Scholar 

  16. Y. Lin, D. Li, M. Zhang et al., ACS Appl. Mater. Inter. 11(40), 36824 (2019)

    Article  CAS  Google Scholar 

  17. V.S. Puli, D.K. Pradhan, B.C. Riggs et al., Integr. Ferroelectr. 157(1), 139 (2014)

    Article  CAS  Google Scholar 

  18. Y. Zhang, Y. Li, H. Zhu et al., J. Mater. Sci.: Mater. Electron. 28(1), 514 (2016)

    Google Scholar 

  19. D. Meng, Q. Feng, N. Luo et al., Ceram. Int. 47(9), 12450 (2021)

    Article  CAS  Google Scholar 

  20. Z. Sun, L. Li, S. Yu et al., Dalton Trans. 46(41), 14341 (2017)

    Article  CAS  Google Scholar 

  21. K. Xu, P. Yang, W. Peng et al., J. Alloys Compd. 829, 154516 (2020)

    Article  CAS  Google Scholar 

  22. H. Yang, F. Yan, G. Zhang et al., J. Alloys Compd. 720, 116 (2017)

    Article  CAS  Google Scholar 

  23. W. Liu, X. Ren, Phys. Rev. Lett. 103(25), 257602 (2009)

    Article  Google Scholar 

  24. X.W. Wang, B.H. Zhang, Y.C. Shi et al., J. Appl. Phys. 127(7), 010901 (2020)

    Google Scholar 

  25. M. Yao, Y. Pu, L. Zhang et al., Mater. Lett. 174, 110 (2016)

    Article  CAS  Google Scholar 

  26. S. Shi, H. Hashimoto, T. Sekino, Ceram. Int. 47(3), 3272 (2021)

    Article  CAS  Google Scholar 

  27. I. Khmiri, I. Kriaa, and H. Khemakhem, Appl. Phys. A 127 (4) (2021).

  28. Z. Wang, J. Wang, X. Chao et al., J. Mater. Sci.: Mater. Electron. 27(5), 5047 (2016)

    CAS  Google Scholar 

  29. X. Zhang, B. Cui, J. Wang et al., Ceram. Int. 45(8), 10626 (2019)

    Article  CAS  Google Scholar 

  30. Q. Zhang, W. Cai, C. Zhou et al., Appl. Phys. A 125(11), 759 (2019)

    Article  Google Scholar 

  31. Z. Hanani, D. Mezzane, M. Amjoud et al., J. Mater. Sci.: Mater. Electron. 31(13), 10096 (2020)

    CAS  Google Scholar 

  32. V.M. Babu, J.P. Praveen, D. Das, Chem. Phys. Lett. 772, 13856 (2021)

    Google Scholar 

  33. Z. Liu, Z. Yang, X. Chao, J. Mater. Sci.: Mater. Electron. 27(9), 8980 (2016)

    CAS  Google Scholar 

  34. J.P. Praveen, T. Karthik, A.R. James et al., J. Eur. Ceram. Soc. 35(6), 1785 (2015)

    Article  CAS  Google Scholar 

  35. Q. Zhang, W. Cai, Q. Li et al., J. Alloys Compd. 794, 542 (2019)

    Article  CAS  Google Scholar 

  36. X. Ji, C. Wang, S. Li et al., J. Mater. Sci.: Mater. Electron. 29(9), 7592 (2018)

    CAS  Google Scholar 

  37. H. Mezzourh, S. Belkhadir, D. Mezzane et al., Phys. B 603, 412760 (2021)

    Article  CAS  Google Scholar 

  38. X.W. Wang, B.H. Zhang, G. Feng et al., J. Electron. Mater. 49(1), 880 (2019)

    Article  Google Scholar 

  39. X.W. Wang, B.H. Zhang, Y.Y. Li et al., J. Mater. Sci.: Mater. Electron. 31(6), 4732 (2020)

    CAS  Google Scholar 

  40. Z. Yang, Y. Yuan, L. Cao et al., Ceram. Int. 46(8), 11282 (2020)

    Article  CAS  Google Scholar 

  41. Q. Xu, H. Liu, L. Zhang et al., RSC Adv. 6(64), 59280 (2016)

    Article  CAS  Google Scholar 

  42. T. Hoshina, S. Hatta, H. Takeda et al., Jpn. J. Appl. Phys. (2018). https://doi.org/10.7567/JJAP.57.0902BB

    Article  Google Scholar 

  43. X.W. Wang, B.H. Zhang, G. Feng et al., Mater. Res. Bull. 114, 74 (2019)

    Article  CAS  Google Scholar 

  44. H. Zhang, H. Giddens, Y. Yue et al., J. Eur. Ceram. Soc. 40(12), 3996 (2020)

    Article  CAS  Google Scholar 

  45. S.B. Li, C.B. Wang, L. Li et al., J. Alloys Compd. 730, 182 (2018)

    Article  CAS  Google Scholar 

  46. H. Yang, F. Yan, Y. Lin et al., J. Alloys Compd. 710, 436 (2017)

    Article  CAS  Google Scholar 

  47. J. Wu, A. Mahajan, L. Riekehr et al., Nano Energy 50, 723 (2018)

    Article  CAS  Google Scholar 

  48. C.-Q. Wang, C. Shu, D.-Y. Zheng et al., J. Mater. Sci.: Mater. Electron. 33(7), 3822 (2022)

    CAS  Google Scholar 

  49. A. Jain, A.K. Panwar, Ceram. Int. 46(8), 10270 (2020)

    Article  CAS  Google Scholar 

  50. R.L. Nayak, Y. Zhang, S.S. Dash et al., Ceram. Int. 48(8), 10803 (2022)

    Article  CAS  Google Scholar 

  51. B. Ma, Y. Zhu, K. Wang et al., Scr. Mater. 170, 1 (2019)

    Article  CAS  Google Scholar 

  52. Y. Qiu, Y. Lin, X. Liu et al., J. Alloys Compd. 797, 348 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (Nos. 51402091,61901161), the Scientific Research Project in Henan Normal University (No. 20210376), Key Scientific Research Projects of Colleges and Universities in Henan Province (21A140014), and Young Backbone Teachers Training Plan of Colleges and Universities in Henan Province (2020GGJS060).

Funding

This article was funded by National Natural Science Foundation of China, Nos. 51402091, Shaoqian Yin,61901161,Shaoqian Yin, the Scientific Research Project in Henan Normal University, No. 20210376,Xianwei Wang, Key Scientific Research Projects of Colleges and Universities in Henan Province,21A140014,Yanchun Hu, Young Backbone Teachers Training Plan of Colleges and Universities in Henan Province,2020GGJS060,Yanchun Hu.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. Resources, funding acquisition and project administration are provided by Xianwei Wang, Yanchun Hu, Jun Shang and Shaoqin Yin. Material preparation was performed by Lulu Xue and Lifang He. Data collection and analysis were completed by Santan Dang, Yongchuang Shi, and Haonan Li. The first draft of the manuscript was written by Santan Dang and Lulu Xue. Review and Editing was completed by Xianwei Wang and Yanchun Hu. All authors commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding authors

Correspondence to Y. C. Hu or X. W. Wang.

Ethics declarations

Competing Interests

The authors certify that there is no conflict of interest, with any individual/organization for the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, S.T., Xue, L.L., He, L.F. et al. Dielectric and energy storage properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with different aging temperature during the sol–gel process. J Mater Sci: Mater Electron 33, 26100–26112 (2022). https://doi.org/10.1007/s10854-022-09297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09297-0

Navigation