Skip to main content
Log in

Synthesis and photoluminescence study of Ba2ZnS3:xMn2+ phosphor prepared by novel soft chemical route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Red-emitting Ba2ZnS3:xMn2+ phosphor samples were prepared using a modified wet chemical co-precipitation method. In this method, hydrazine hydrate is used as one of the precursors. The powder samples prepared were subjected to X-ray diffraction (XRD) analysis. The surface morphology was observed by scanning electron microscope (SEM) imaging technique. The photoluminescence emission, as well as excitation spectra, were recorded. Variation of emission intensity for various Mn2+ doping concentrations was recorded. The concentration quenching effect was studied. CIE 1931 color coordinates were found. The red-emitting Ba2ZnS3:xMn2+ phosphor exhibits a broad emission spectrum in the range of 550–700 nm with FWHM (Full-width half maxima) 56 nm. The excitation spectrum monitored at 611 nm emission exhibits broadband from 250 to 400 nm. The excitation band shows an excellent spread in the near UV region of the spectrum. It can be applied as a red phosphor in the fabrication of white LEDs from UVLED chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data and materials as well as software application or custom code support their published claims and comply with field standards.

References

  1. G. Blasse, J. lumin. (1997). https://doi.org/10.1016/S0022-2313(96)00166-4

    Article  Google Scholar 

  2. P.F. Smet, A.B. Parmentier, D. Poelman, J. Electrochem. Soc. (2011). https://doi.org/10.1149/1.3568524

    Article  Google Scholar 

  3. S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mater. Sci. Eng. R Rep. (2010). https://doi.org/10.1016/j.mser.2010.07.001

    Article  Google Scholar 

  4. L. Chen, C.C. Lin, C.W. Yeh, R.S. Liu, Materials (2010). https://doi.org/10.3390/ma3032172

    Article  Google Scholar 

  5. D. Chikte, S.K. Omanwar, S.V. Moharil, J. lumin. (2013). https://doi.org/10.1016/j.jlumin.2013.03.045

    Article  Google Scholar 

  6. J.L. Leano Jr., M.H. Fang, R.S. Liu, ECS J. Solid State Sci. Technol. (2017). https://doi.org/10.1149/2.0161801jss

    Article  Google Scholar 

  7. D. Chikte, S.K. Omanwar, J. Asian Ceram. Soc. (2019). https://doi.org/10.1080/21870764.2019.1641885

    Article  Google Scholar 

  8. N.S. Bajaj, K.A. Koparkar, P.A. Nagpure et al., J. Opt. (2017). https://doi.org/10.1007/s12596-016-0344-3

    Article  Google Scholar 

  9. I.E. Kolesnikov, A.A. Kalinichev, M.A. Kurochkin et al., Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-38774-6

    Article  Google Scholar 

  10. R. Venkatesh, N. Dhananjaya, M.K. Sateesh, J.S. Begum, S.R. Yashodha, H. Nagabhushana, C. Shivakumara, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.10.117

    Article  Google Scholar 

  11. L. Cao, W. Li, B. Devakumar, N. Ma, X. Huang, A.F. Lee, ACS Appl. Mater. Interfaces (2022). https://doi.org/10.1021/acsami.1c23286

    Article  Google Scholar 

  12. L. Sun, B. Devakumar, J. Liang, S. Wang, Q. Sun, X. Huang, J. Mater. Chem. C (2020). https://doi.org/10.1039/C9TC04952E

    Article  Google Scholar 

  13. Y. Gao, S. Murai, K. Shinozaki, J. Qiu, K. Tanaka, A.C.S. Appl, Electron. Mater. (2019). https://doi.org/10.1021/acsaelm.9b00129

    Article  Google Scholar 

  14. Y. Gao, J. Qiu, D. Zhou, J. Am. Ceram. Soc. (2017). https://doi.org/10.1111/jace.14807

    Article  Google Scholar 

  15. P.F. Smet, I. Moreels, Z. Hens, D. Poelman, Materials (2010). https://doi.org/10.3390/ma3042834

    Article  Google Scholar 

  16. M.M. Yuta, W.B. White, J. Electrochem. Soc. (1992). https://doi.org/10.1149/1.2221229

    Article  Google Scholar 

  17. H.G. Schnering, R. Hoppe, Z. Anorg. Allg. Chem. (1961). https://doi.org/10.1002/zaac.19613120114

    Article  Google Scholar 

  18. X. Zhang, J. Wang, J. Zhang, Q. Su, Mater. Lett. (2007). https://doi.org/10.1016/j.matlet.2006.05.055

    Article  Google Scholar 

  19. X. Zhang, H. Zeng, Q. Su, J. Alloys Compd. (2007). https://doi.org/10.1016/j.jallcom.2006.09.090

    Article  Google Scholar 

  20. Y.F. Lin, Y.H. Chang, B.S. Tsai, J. Alloys Compd. (2004). https://doi.org/10.1016/j.jallcom.2004.01.053

    Article  Google Scholar 

  21. Y.F. Lin, Y.H. Chang, Y.S. Chang, B.S. Tsai, Y.C. Li, J. Alloys Compd. (2006). https://doi.org/10.1016/j.jallcom.2005.11.038

    Article  Google Scholar 

  22. C.W. Lee, V. Petrykin, M. Kakihana, J. Cryst. Growth (2009). https://doi.org/10.1016/j.jcrysgro.2008.09.044

    Article  Google Scholar 

  23. P. Thiyagarajan, M. Kottaisamy, R.M.S. Rao, J. Phys. D (2006). https://doi.org/10.1088/0022-3727/39/13/011

    Article  Google Scholar 

  24. A.M. Pirees, M.R. Davolos, Chem. Mater. (2001). https://doi.org/10.1021/cm000063g

    Article  Google Scholar 

  25. R.D. Shannon, Acta Crystallogr. A (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  26. Y. Tunabe, S. Sugano, J. Phys. Soc. Jpn. (1954). https://doi.org/10.1143/JPSJ.9.766

    Article  Google Scholar 

  27. L.E. Orgel, J. Chem. Phys. (1955). https://doi.org/10.1063/1.1742182

    Article  Google Scholar 

  28. L. Gacem, A. Artemenko, D. Ouadjaout, J.P. Chaminade, A. Garcia, M. Pollet, Solid State Sci. (2009). https://doi.org/10.1016/j.solidstatesciences.2009.08.006

    Article  Google Scholar 

  29. S. Shionoya, W. Yen, H. Yamamoto, Phosphor handbook (CRC Press, Boca Raton, 1999)

    Google Scholar 

Download references

Acknowledgements

The author wants to thank S. K. Omanwar (former Head SGB Amaravati University) and S. V. Moharil (former Head RTM Nagpur University) for their guidance in interpreting the findings of this research.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This is a single-author paper.

Corresponding author

Correspondence to D. P. Awade.

Ethics declarations

Conflict of interest

“The authors have no relevant financial or non-financial interest to disclose.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awade, D.P. Synthesis and photoluminescence study of Ba2ZnS3:xMn2+ phosphor prepared by novel soft chemical route. J Mater Sci: Mater Electron 33, 25297–25303 (2022). https://doi.org/10.1007/s10854-022-09236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09236-z

Navigation