Skip to main content
Log in

The effect of Fe3O4 nanoparticles on structural, optical, and thermal properties MoS2 nanoflakes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2), due to high surface area, excellent photothermal heat, and strong absorbance in near-infrared (NIR) region, is used extensively as a photothermal agent for biomedical applications. In this paper, we reported a nanoplatform based on MoS2 nanoflakes decorated with super-paramagnetic iron oxide magnetic nanoparticle (Fe3O4) (MoS2–Fe3O4 nanocomposite) to increase emission photothermal heat of MoS2 nanoflakes and it is used as a target moiety directed by external magnetic field to tumor site. Herein, samples were synthesized by using hydrothermal method and characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR), UV–Vis, and Raman spectroscopes. These characterizations confirmed that Fe3O4 nanoparticles have been incorporated between MoS2 nanoflakes successfully. Vibrating sample magnetometer (VSM) was used to see the magnetic characteristics of the samples. This characterization confirmed that the saturation magnetization (Ms) of MoS2–Fe3O4 nanocomposite is enough to separate magnetic nanocomposite quickly from the water sample with an external magnetic field. Finally, photothermal results of samples indicated that nanocomposite produced higher photothermal heat than MoS2 and Fe3O4 individual samples after 10-min laser irradiation (808 nm continuous wave laser, 1 W/cm2). So, MoS2–Fe3O4 nanocomposite can be applied as a suitable photothermal agent for further biological applications such as photothermal therapy, drug delivery, and magnetic resonance imaging (MRI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. K. Wang, Y. Xiang, W. Pan, H. Wang, N. Li, B. Tang, Dual-targeted photothermal agents for enhanced cancer therapy. Chem. Sci. 11, 8055 (2020)

    Article  CAS  Google Scholar 

  2. J. Chen, Ch. Ning, Zh. Zhou, P. Yu, Y. Zhu, G. Tan, Ch. Mao, Nanomaterials as photothermal therapeutic agents. Prog. Mater. Sci. 99, 1 (2019)

    Article  Google Scholar 

  3. V. Yadav, S. Roy, P. Singh, Z. Khan, A. Jaiswal, 2D MoS2-based nanomaterials for therapeutic bioimaging, and biosensing application. Small 15, 1803706 (2019)

    Article  Google Scholar 

  4. M. Kolahdouz, B. Xu, A. Faghih Nasiri, M. Fathollahzadeh, M. Manian, H. Aghababa, Y. Wu, H.H. Radamson, Carbon-related materials: graphene and carbon nanotubes in semiconductor applications and design. Micromachines 13(8), 1257 (2022)

    Article  Google Scholar 

  5. W. Sun, X. Zhang, H.R. Jia, Y.X. Zhu, Y. Guo, G. Gao, Y.H. Li, F.G. Wu, Water-dispersible candle soot–derived carbon nano-onion clusters for imaging-guided photothermal cancer therapy. Small 15, 1804575 (2019)

    Article  Google Scholar 

  6. E. Porcel, S. Liehn, H. Remita, N. Usami, K. Kobayashi, Y. Furusawa, C. Le Sech, S. Lacombe, Platinum nanoparticles: a promising material for future cancer therapy. Nanotechnology 21, 085103 (2010)

    Article  Google Scholar 

  7. S.J. Wang, P. Huang, L.M. Nie, R.J. Xing, D.B. Liu, Z. Wang, J. Lin, S.H. Chen, G. Niu, G.M. Lu et al., Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 25, 3055 (2013)

    Article  CAS  Google Scholar 

  8. J.B. Vines, J.-H. Yoon, N.-E. Ryu, D.-J. Lim, H. Park, Gold nanoparticles for photothermal cancer therapy. Front. Chem. 7, 167 (2019)

    Article  CAS  Google Scholar 

  9. M. Manikandan, N. Hasan, H.F. Wu, Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials 34, 5833 (2013)

    Article  CAS  Google Scholar 

  10. S.S. Chou, B. Kaehr, J. Kim, B.M. Foley, M. De, P.E. Hopkins, J. Huang, C.J. Brinker, V.P. Dravid, Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem. Int. Ed. Engl. 52, 4160 (2013)

    Article  CAS  Google Scholar 

  11. G. Terentyuk, E. Panfilova, V. Khanadeev, D. Chumakov, E. Genina, A. Bashkatov, V. Tuchin, A. Bucharskaya, G. Maslyakova, N. Khlebtsov et al., Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 7, 325 (2014)

    Article  CAS  Google Scholar 

  12. Sh. Ahmadian-Fard-Fini, D. Ghanbari, O. Amiri, M. Salavati-Niasari, Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohyd. Polym. 229, 115428 (2020)

    Article  CAS  Google Scholar 

  13. A. Abareshi, R. Bafkari, M. Houshiar, R. Dinarvand, Molybdenum disulfide/carbon nanocomposite with enhanced photothermal effect for doxorubicin delivery. Eur. Phys. J. Plus. 136, 57 (2021)

    Article  CAS  Google Scholar 

  14. R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Design of magnetically recyclable ternary Fe2O3/EuVO4/g-C3N4 nanocomposites for photocatalytic and electrochemical hydrogen storage. ACS Appl. Energy Mater. 4(1), 680 (2021)

    Article  CAS  Google Scholar 

  15. Y. Wang, J. Zhen Ou, S. Balendhran, A.F. Chrimes, M. Mortazavi, D.D. Yao, M.R. Field, K. Latham, V. Bansal, J.R. Friend, S. Zhuiykov, N.V. Medhekar, M.S. Strano, K. Kalantarzadeh, Electrochemical control of photoluminescence in two-dimensional MoS2 nanoflakes. ACS Nano 7, 10083 (2013)

    Article  CAS  Google Scholar 

  16. X. Ma, H. Tao, K. Yang, L. Feng, L. Cheng, X. Shi, Y. Li, L. Guo, Z. Liu, A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 5, 199 (2012)

    Article  CAS  Google Scholar 

  17. B. Liu, Ch. Li, G. Chen, B. Liu, X. Deng, Y. Wei, J. Xia, B. Xing, P. Ma, J. Lin, Synthesis and optimization of MoS2@Fe3O4-ICG/Pt(IV) nanoflowers for MR/IR/PA bioimaging and combined PTT/PDT/chemotherapy triggered by 808 nm laser. Adv. Sci. 4, 1600540 (2017)

    Article  Google Scholar 

  18. Q. Wei, H. Ni, X. Jin, J. Yuan, Graphene oxide wrapped gold nanorods for enhanced photo-thermal stability. RSC Adv. 5, 54971 (2015)

    Article  CAS  Google Scholar 

  19. K.C. Leung, S. Xuan, X. Zhu, D. Wang, C.P. Chak, S.F. Lee et al., Gold and iron oxide hybrid nanocomposite materials. Chem. Soc. Rev. 41, 1911 (2012)

    Article  CAS  Google Scholar 

  20. L.S. Ganapathe, M.A. Mohamed, R. Mohamad Yunus, D. Duryha Berhanuddin, Magnetite (Fe3O4) nanoparticles in biomedical application: from synthesis to surface functionalisation. Magnetochemistry. 6(4), 68 (2020)

    Article  CAS  Google Scholar 

  21. S. Moraes Silva, R. Tavallaie, L. Sandiford, R.D. Tilley, J.J. Gooding, Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications. Chem. Commun. 52, 7528 (2016)

    Article  CAS  Google Scholar 

  22. M. Amiri, M. Salavati-Niasari, A. Pardakhty, M. Ahmadi, A. Akbari, Caffeine: a novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery. Mater. Sci. Eng. C 76, 1085 (2017)

    Article  CAS  Google Scholar 

  23. L.M. Lacroix, F. Delpech, C. Nayral, S. Lachaize, B. Chaudret, New generation of magnetic and luminescent nanoparticles for in vivo real time imaging. Interface Focus 3, 20120103 (2013)

    Article  Google Scholar 

  24. N. Dubravka, J. Marta, P. Jovana, V. Danijela, R. Tatjana, R.S. Sanja et al., Application of iron nanoparticles in contemporary physiology and cell biology research. Rev. Adv. Mater. Sci. 53, 74 (2018)

    Article  Google Scholar 

  25. A. Abareshi, M. Arshadi Pirlar, M. Houshiar, Photothermal property in MoS2 nanoflakes: theoretical and experimental comparison. Mater. Res. Express. 6, 105050 (2019)

    CAS  Google Scholar 

  26. J. Yu, W. Yin, X. Zheng, G. Tian, X. Zhang, T. Bao, X. Dong, Z. Wang, Z. Gu, X. Ma, Y. Zhao, Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics 5, 931 (2015)

    Article  CAS  Google Scholar 

  27. L. Ye, H. Xu, D. Zhang, S. Chen, Synthesis of bilayer MoS2 nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity. Mater. Res. Bull. 55, 221 (2014)

    Article  CAS  Google Scholar 

  28. L.Q. Fan, G.J. Liu, C.Y. Zhang, J.H. Wu, Y.L. Wei, Facile one step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor. Int. J. Hydrog. Energy. 40, 10150 (2015)

    Article  CAS  Google Scholar 

  29. A. Zhang, A. Li, W. Tian, Z. Li, C. Wei, Y. Sun, W. Zhao, M. Liu, J. Liu, A target directed chemo-photothermal system based on transferrin and copolymer-modified MoS2 nanoplates with pH-activated drug release. Chem. Eur. J. 23, 11346 (2017)

    Article  CAS  Google Scholar 

  30. O. Belahssen, M. Ghougali, A. Chala, Effect of Iron doping on physical properties of NiO thin films. J. Nano- Electron. Phys. 10, 02039 (2018)

    Article  Google Scholar 

  31. M. Zarei, I. Mohammadzadeh, K. Saidi, H. Sheibani, g-C3N4 quantum dot decorated MoS2/Fe3O4 as a novel recoverable catalyst for photodegradation of organic pollutant under visible light. J. Mater. Sci. Mater. Electron 32, 26213 (2021)

    Article  CAS  Google Scholar 

  32. W. Feng, L. Chen, M. Qin, X. Zhou, Q. Zhang, Y. Miao, K. Qiu, Y. Zhang, C. He, Flower like PEGylated MoS2 nanoflakes for near infrared photothermal cancer therapy. Sci. Rep. 5, 17422 (2015)

    Article  CAS  Google Scholar 

  33. A. Abareshi, M. Arshadi Pirlar, M. Houshiar, Experimental and theoretical investigation of the photothermal effect in gold nanorods. New J. Chem. 45(1), 298 (2021)

    Article  CAS  Google Scholar 

  34. Q.H. Wang, K. Kalantarzadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012)

    Article  CAS  Google Scholar 

  35. H. Li, Q. Zhang, C.C.R. Yap, B. Ka Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385 (2012)

    Article  CAS  Google Scholar 

  36. N. Bhattarai, H.R. Ramay, J. Gunn, F.A. Matsen, M. Zhang, PEG-grafted chitosan as an injectable thermo sensitive hydrogel for sustained protein release. J. Control. Release. 103, 609 (2005)

    Article  CAS  Google Scholar 

  37. A. Abareshi, N. Samadi, M. Houshiar, S. Nafisi, H.I. Maibach, Erythromycin dermal delivery by MoS2 nanoflakes. J. Pharm. Investig. 51, 691 (2021)

    Article  CAS  Google Scholar 

  38. R. Bhosale, V. Singh, Advances in aggregation induced emission materials in biosensing and imaging for biomedical applications—Part B, 1st edn. (Elsevier, 2021)

    Google Scholar 

  39. A. Ramadoss, T. Kim, G.-S. Kim, S.J. Kim, Enhanced activity of a hydrothermally synthesized mesoporous MoS2 nanostructure for high performance supercapacitor applications. New J. Chem. 38, 2379 (2014)

    Article  CAS  Google Scholar 

  40. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111 (2011)

    Article  CAS  Google Scholar 

  41. T. Liu, S. Shi, C. Liang, S. Shen, L. Cheng, C. Wang, X. Song, S. Goel, T.E. Barnhart, W. Cai, Z. Liu, Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 9(1), 950 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AA and NS. The first draft of the manuscript was written by AA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Afsaneh Abareshi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abareshi, A., Salehi, N. The effect of Fe3O4 nanoparticles on structural, optical, and thermal properties MoS2 nanoflakes. J Mater Sci: Mater Electron 33, 25153–25162 (2022). https://doi.org/10.1007/s10854-022-09220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09220-7

Navigation