Skip to main content
Log in

Photodegradation of Rhodamine B and Crystal Violet using Al-doped Co–Mn nanoferrites and dielectric study

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Precious water resources are under threat by pollution due to toxic organic dyes from industries. As a solution for water pollution, we have developed a multifunctional photocatalyst that will effectively degrade the toxic pollutants in the water bodies. We synthesized aluminium-doped Co–Mn ferrites as a photocatalyst via citrate-gel method and investigated the degradation of toxic pollutants of water such as Rhodamine B (RhB), Crystal violet (CV) under visible light for their potential application in wastewater treatment. One of the compositions of the catalyst Co0.75Mn0.25AlFeO4 has shown effective photocatalytic performance in degrading RhB and CV with OH radical and holes (h+) as active species responsible for degradation. The dielectric and impedance properties of Co–Mn nanoferrites and the influence of Al were also studied from room temperature (RT) to 350 °C. Dielectric studies revealed a normal dielectric behaviour of the samples with regard to frequency at various temperatures as evident by Koop’s theory and Maxwell–Wagner bilayer model. A decline in the dielectric parameters such as dielectric loss and dielectric constant was observed with an increase in Aluminium doping. Influence of frequency and temperature on dielectric parameters and impedance was studied. Area under the curve of Nyquist plots decreased with rise in temperature that represent the tendency of ferrite samples to show better conductivity. Observed low dielectric loss by Al doping in Co–Mn ferrites makes these materials appropriate for microwave devices at high frequency with low eddy current losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. A. Aziz, N. Ali, A. Khan, M. Bilal, S. Malik, N. Ali, H. Khan, Int. J. Biol. Macromol. 153, 502 (2020)

    Article  CAS  Google Scholar 

  2. N. Ali, M. Bilal, M.S. Nazir, A. Khan, F. Ali, H.M.N. Iqbal, Sci. Total Environ. 712, 136482 (2020)

    Article  CAS  Google Scholar 

  3. H. Ullah, E. Viglašová, M. Galamboš, Processes 9, 1 (2021)

    Article  Google Scholar 

  4. D. Ayodhya, G. Veerabhadram, Mater. Today Energy 9, 83 (2018)

    Article  Google Scholar 

  5. E. Casbeer, V.K. Sharma, X.Z. Li, Sep. Purif. Technol. 87, 1 (2012)

    Article  CAS  Google Scholar 

  6. R.C.C. Costa, M. De Fátima Fontes Lelis, L.C.A. Oliveira, J.D. Fabris, J.D. Ardisson, R.R.V.A. Rios, C.N. Silva, R.M. Lago, Catal. Commun. 4, 525 (2003)

    Article  CAS  Google Scholar 

  7. M. Soliman Selim, G. Turky, M. A. Shouman, and G. A. El-Shobaky, Solid State Ionics 120, 173 (1999).

  8. J.D. Fabris, W.D.N. Mussel, J.M.D. Coey, M.F. De Jesus Filho, A.T. Goulart, Hyperfine Interact. 110, 33 (1997)

    Article  CAS  Google Scholar 

  9. Z. Šimša, Phys. Status Solidi 96, 581 (1979)

    Article  Google Scholar 

  10. C.G. Ramankutty, S. Sugunan, B. Thomas, J. Mol. Catal. A Chem. 187, 105 (2002)

    Article  CAS  Google Scholar 

  11. P. Lahiri, S.K. Sengupta, J. Chem. Soc. Faraday Trans. 91, 3489 (1995)

    Article  CAS  Google Scholar 

  12. D.J. Dire, J.A. Wilkinson, J. Toxicol. 5, 603 (1987)

    Google Scholar 

  13. R. Ullah, C. Liu, H. Panezai, A. Gul, J. Sun, X. Wu, Arab J. Chem. 13, 4092 (2020)

    Article  CAS  Google Scholar 

  14. S. Barapati, M. Raghasudha, P. Veera Somaiah, Asian J. Chem. 33, 1125 (2021)

    Article  CAS  Google Scholar 

  15. Y.Q. Wang, G.Q. Hu, X.F. Duan, H.L. Sun, Q.K. Xue, Chem. Phys. Lett. 365, 427 (2002)

    Article  CAS  Google Scholar 

  16. H. Zhang, G. Chen, D.W. Bahnemann, J. Mater. Chem. 19, 5089 (2009)

    Article  CAS  Google Scholar 

  17. K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005)

    Article  CAS  Google Scholar 

  18. S. Kossar, I.B.S. Banu, N. Aman, R. Amiruddin, J. Dispers. Sci. Technol. 42, 2053 (2021)

    Article  CAS  Google Scholar 

  19. A.K. Gupta, A. Pal, C. Sahoo, Dye. Pigment. 69, 224 (2006)

    Article  CAS  Google Scholar 

  20. Y. Hu, W. Zhang, W. Pan, Mater. Res. Bull. 48, 668 (2013)

    Article  CAS  Google Scholar 

  21. M. Sharma, T. Jain, S. Singh, O.P. Pandey, Sol. Energy 86, 626 (2012)

    Article  CAS  Google Scholar 

  22. V.V. Jadhav, R.S. Dhabbe, S.R. Sabale, G.H. Nikam, B.V. Tamhankar, Univ. J. Environ. Res. Technol. 3, 667 (2013)

    Google Scholar 

  23. S.A. Jadhav, S.B. Somvanshi, M.V. Khedkar, S.R. Patade, K.M. Jadhav, J. Mater. Sci. Mater. Electron. 31, 11352 (2020)

    Article  CAS  Google Scholar 

  24. S.F. Mansour, F. Al-Hazmi, M.S. AlHammad, M.S. Sadeq, M.A. Abdo, J. Mater. Res. Technol. 15, 2543 (2021)

    Article  CAS  Google Scholar 

  25. Z.O. Nanoparticles, T. Van Tran (2021)

  26. S.S. Shinde, J. Semicond. 36, 1 (2015)

    Google Scholar 

  27. T. Javed, A. Maqsood, A.A. Malik, J. Supercond. Nov. Magn. 24, 2137 (2011)

    Article  CAS  Google Scholar 

  28. K.W. Wagner, Ann. Phys. 345, 817 (1913)

    Article  Google Scholar 

  29. A. Rana, O.P. Thakur, V. Kumar, Mater. Lett. 65, 3191 (2011)

    Article  CAS  Google Scholar 

  30. S.M. Patange, S.E. Shirsath, K.S. Lohar, S.S. Jadhav, N. Kulkarni, K.M. Jadhav, Phys. B Condens. Matter 406, 663 (2011)

    Article  CAS  Google Scholar 

  31. D.K. Mahato, S. Banerjee, Mater. Today Proc. 4, 5525 (2017)

    Article  Google Scholar 

  32. A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, J. Alloys Compds. 464, 361 (2008)

    Article  CAS  Google Scholar 

  33. M. Tan, Y. Köseoǧlu, F. Alan, E. Şentürk, J. Alloys Compds. 509, 9399 (2011)

    Article  CAS  Google Scholar 

  34. W. Schmid, Phys. Status Solidi 84, 529 (1977)

    Article  CAS  Google Scholar 

  35. P.P. Mohapatra, S. Pittal, P. Dobbidi, J. Mater. Res. Technol. 9, 2992 (2020)

    Article  CAS  Google Scholar 

  36. D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, B.M. Nagabhushana, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumara, J. Alloys Compds. 587, 50 (2014)

    Article  CAS  Google Scholar 

  37. N. Rezlescu, E. Rezlescu, Phys. Status Solidi 23, 575 (1974)

    Article  CAS  Google Scholar 

  38. N. Singh, A. Agarwal, S. Sanghi, Curr. Appl. Phys. 11, 783 (2011)

    Article  Google Scholar 

  39. K.P. Thummer, H.H. Joshi, R.G. Kulkarni, J. Mater. Sci. Lett. 18, 1529 (1999)

    Article  CAS  Google Scholar 

  40. K.M. Batoo, S. Kumar, C.G. Lee, Curr. Appl. Phys. 9, 1397 (2009)

    Article  Google Scholar 

  41. K.L. Routray, S. Saha, D. Behera, Phys. Status Solidi Basic Res. 256, 1 (2019)

    Google Scholar 

  42. G.R. Gajula, L.R. Buddiga, C.K. Chidambara, M. Dasari, J. Sci. Adv. Mater. Devices 3, 230 (2018)

    Article  Google Scholar 

  43. C. Murugesan, G. Chandrasekaran, RSC Adv. 5, 73714 (2015)

    Article  CAS  Google Scholar 

  44. M. Atif, M. Idrees, M. Nadeem, M. Siddique, M.W. Ashraf, RSC Adv. 6, 20876 (2016)

    Article  CAS  Google Scholar 

  45. B.M. Sahanashree, E. Melagiriyappa, M. Veena, G.J. Shankaramurthy, A. Somashekarappa, H.S. Jayanna, H.M. Somashekarappa, Radiat. Phys. Chem. 139, 55 (2017)

    Article  CAS  Google Scholar 

  46. M. Belal Hossen, A.K.M. Akther Hossain, Adv. Mater. Lett. 6, 810 (2015)

    Article  Google Scholar 

  47. S.K. Ahmed, M.F. Mahmood, M. Arifuzzaman, M. Belal Hossen, Results Phys. 30, 104833 (2021)

    Article  Google Scholar 

  48. M. Hashim, S. Kumar, S. Ali, B.H. Koo, H. Chung, R. Kumar, J. Alloys Compds. 511, 107 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support and encouragement rendered by Head, Department of Chemistry, UCS, Osmania University in carrying out this research work. B.S also acknowledge CSIR, New Delhi for its financial support. Author MR is grateful to the National Institute of Technology Warangal (NITW) for the Research Seed Money (P1082 Plan Gen.-RSM).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors SB, RM, RG, PVS designed and developed the photocatalyst and studied its activity for dye degradation and studied its dielectric properties. The manuscript was written through contributions of all SB, RM, RG, PVS. All authors SB, RM, RG, PVS read and approved the final version of the manuscript.

Corresponding author

Correspondence to Raghasudha Mucherla.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barapati, S., Mucherla, R., Gade, R. et al. Photodegradation of Rhodamine B and Crystal Violet using Al-doped Co–Mn nanoferrites and dielectric study. J Mater Sci: Mater Electron 33, 25139–25152 (2022). https://doi.org/10.1007/s10854-022-09219-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09219-0

Navigation