Skip to main content

Water Depollution Using Ferrites Photocatalysts

  • Chapter
  • First Online:
Green Materials for Energy, Products and Depollution

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 3))

Abstract

The presence of organic pollutants and pathogenic microorganisms in water has become an increasing concern throughout the world. Heterogeneous photocatalytic technologies have been applied to control the organic pollutants and microorganisms in water. Development of narrow band-gap photocatalysts which function in the visible light remains a challenge in the wastewater treatment processes. Spinel ferrites has attracted a remarkable attention because of a relatively narrow band gap of about 2.0 eV, which has considerable photo-response in the visible light region. This chapter reviews recent advances in ferrites and the application of visible light photocatalysts to the remediation of contaminants such as H2S, phenols, and dyes in water. Recent development in synthesis and characterization of ferrite and hybrid ferrites with other semiconductors is reviewed. The applications of ferrites in photocatalytic conversion of visible solar energy to generate e/h+, which in turn produce reactive oxygen species through redox processes for the degradation of the pollutants in water, are demonstrated. We discuss the enhanced visible photocatalytic activity of ferrites by doping with metals and combing with other photocatalysts. Moreover, the addition of H2O2 to ferrite either in dark or visible light irradiation indicates the enhanced degradation efficiency for organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe R (2011) Development of a new system for photocatalytic water splitting into H2 and O2 under visible light irradiation. Bull Chem Soc Jpn 84:1000–1030

    Article  CAS  Google Scholar 

  • Aziz AA, Cheng CK, Ibrahim S, Matheswaran M, Saravanan P (2012a) Visible light improved, photocatalytic activity of magnetically separable titania nanocomposite. Chem Eng J 183:349–356

    Article  Google Scholar 

  • Aziz AA, Yong KS, Ibrahim S, Pichiah S (2012b) Enhanced magnetic separation and photocatalytic activity of nitrogen doped titania photocatalyst supported on strontium ferrite. J Hazard Mater 199–200:143–150

    Article  Google Scholar 

  • Baldrian P, Merhautová V, Gabriel J, Nerud F, Stopka P, Hrubý M, Beneš MJ (2006) Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides. Appl Catal Environ 66:258–264

    Article  CAS  Google Scholar 

  • Benko FA, Koffyberg FP (1986) The effect of defects on some photoelectrochemical properties of semiconducting MgFe2O4. Mater Res Bull 21:1183–1188

    Article  CAS  Google Scholar 

  • Blanco-Gutierrez V, Climent-Pascual E, Torralvo-Fernandez MJ, Saez-Puche R, Fernandez-Diaz MT (2011) Neutron diffraction study and superparamagnetic behavior of ZnFe2O4 nanoparticles obtained with different conditions. J Solid State Chem 184:1608–1613

    Article  CAS  Google Scholar 

  • Blanco-Gutiérrez V, Jiménez-Villacorta F, Bonville P, Torralvo-Fernández MJ, Sáez-Puche R (2011) X-ray absorption spectroscopy and Mössbauer spectroscopy studies of superparamagnetic ZnFe2O4 nanoparticles. J Phys Chem C 115:1627–1634

    Article  Google Scholar 

  • Borse PH, Jun H, Choi SH, Hong SJ, Lee JS (2008) Phase and photoelectrochemical behavior of solution-processed Fe2O3 nanocrystals for oxidation of water under solar light. Appl Phys Lett 93

    Google Scholar 

  • Burdett JK, Price GD, Price SL (1982) Role of the crystal-field theory in determining the structures of spinels. J Am Chem Soc 104:92–95

    Article  CAS  Google Scholar 

  • Cao J, Kako T, Li P, Ouyang S, Ye J (2011) Fabrication of p-type CaFe2O4 nanofilms for photoelectrochemical hydrogen generation. Electrochem Commun 13:275–278

    Article  CAS  Google Scholar 

  • Casbeer E, Sharma VK, Li X (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol 87:1–14

    Article  CAS  Google Scholar 

  • Chen C-H, Liang Y-H, Zhang W-D (2010) ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation. J Alloys Compd 501:168–172

    Article  CAS  Google Scholar 

  • Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  CAS  Google Scholar 

  • Cheng P, Li W, Zhou T, Jin Y, Gu M (2004) Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation. J Photochem Photobiol A 168:97–101

    Article  CAS  Google Scholar 

  • Degueldre C, Kuri G, Borca CN, Grolimund D (2009) X-ray micro- fluorescence, diffraction and absorption spectroscopy for local structure investigation of a radioactive zinc ferrite deposit. Corros Sci 51:1690–1695

    Article  CAS  Google Scholar 

  • Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211–212:3–29

    Article  Google Scholar 

  • Dom R, Subasri R, Radha K, Borse PH (2011) Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun 151:470–473

    Article  CAS  Google Scholar 

  • Fan G, Gu Z, Yang L, Li F (2009) Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique. Chem Eng J 155:534–541

    Article  CAS  Google Scholar 

  • Gerischer H, Heller A (1991) The role of oxygen in photooxidation of organic molecules on semiconductor particles. J Phys Chem 95:5261–5267

    Article  CAS  Google Scholar 

  • Gibson MA, Hightower JW (1976) Oxidative dehydrogenation of butenes over magnesium ferrite kinetic and mechanistic studies. J Catal 41:420–430

    Article  CAS  Google Scholar 

  • Han SB, Kang TB, Joo OS, Jung KD (2007) Water splitting for hydrogen production with ferrites. Sol Energ 81:623–628

    Article  CAS  Google Scholar 

  • Hankare PP, Patil RP, Jadhav AV, Garadkar KM, Sasikala R (2011) Enhanced photocatalytic degradation of methyl red and thymol blue using titania-alumina-zinc ferrite nanocomposite. Appl Catal Environ 107:333–339

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Hou X, Feng J, Liu X, Ren Y, Fan Z, Wei T, Meng J, Zhang M (2011) Synthesis of 3D porous ferromagnetic NiFe2O4 and using as novel adsorbent to treat wastewater. J Colloid Interface Sci 362:477–485

    Article  CAS  Google Scholar 

  • Hou Y, Li X, Zhao Q, Quan X, Chen G (2010) Electrochemically assisted photocatalytic degradation of 4-chlorophenol by ZnFe2O4-modified TiO2 nanotube array electrode under visible light irradiation. Environ Sci Technol 44:5098–5103

    Article  CAS  Google Scholar 

  • Ida S, Yamada K, Matsunaga T, Hagiwara H, Matsumoto Y, Ishihara T (2010) Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. J Am Chem Soc 132:17343–17345

    Article  CAS  Google Scholar 

  • Jadhav SV, Jinka KM, Bajaj HC (2012) Nanosized sulfated zinc ferrite as catalyst for the synthesis of nopol and other fine chemicals. Catal Today 198:98–105

    Article  CAS  Google Scholar 

  • Kamat PV (2012) Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. J Phys Chem Lett 3:663–672

    Article  CAS  Google Scholar 

  • Kim HG, Borse PH, Jang JS, Jeong ED, Jung O, Suh YJ, Lee JS (2009) Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chem Commun 39:5889–5891

    Article  Google Scholar 

  • Kubacka A, Fernández-García M, Colón G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614

    Article  CAS  Google Scholar 

  • Li C-J, Wang JN, Wang B, Gong JR, Lin Z (2012) Direct formation of reusable TiO2/CoFe2O4 heterogeneous photocatalytic fibers via two-spinneret electrospinning. J Nanosci Nanotechnol 12:2496–2502

    Article  CAS  Google Scholar 

  • Li S, Wang E, Tian C, Mao B, Kang Z, Li Q, Sun G (2008) Jingle-bell-shaped ferrite hollow sphere with a noble metal core: simple synthesis and their magnetic and antibacterial properties. J Solid State Chem 181:1650–1658

    Article  CAS  Google Scholar 

  • Li X, Hou Y, Zhao Q, Teng W, Hu X, Chen G (2011) Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol. Chemosphere 82:581–586

    Article  CAS  Google Scholar 

  • Li Y, Liu Z (2011) Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. J Am Chem Soc 133:15743–15752

    Article  CAS  Google Scholar 

  • Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  CAS  Google Scholar 

  • Liu G-G, Zhang X-Z, Xu Y-J, Niu X-S, Zheng L-Q, Ding X-J (2004) Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2. Chemosphere 55:1287–1291

    Article  CAS  Google Scholar 

  • Liu J, Lu G, He H, Tan H, Xu T, Xu K (1996) Studies on photocatalytic activity of zinc ferrite catalysts syntedesized by shock waves. Mater Res Bull 31:1049–1056

    Article  CAS  Google Scholar 

  • Liu Z, Zhao Z, Miyauchi M (2009) Efficient visible light active CaFe2O4/WO3 based composite photocatalysts: effect of interfacial modification. J Phys Chem C 113:17132–17137

    Article  CAS  Google Scholar 

  • Lv H, Ma L, Zeng P, Ke D, Peng T (2010) Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. J Mater Chem 20:3665–3672

    Article  CAS  Google Scholar 

  • Manova E, Tsoncheva T, Paneva D, Mitov I, Tenchev K, Petrov L (2004) Mechanochemically synthesized nano-dimensional iron-cobalt spinel oxides as catalysts for methanol decomposition. Appl Catal Gen 277:119–127

    Article  CAS  Google Scholar 

  • Manova E, Tsoncheva T, Paneva D, Popova M, Velinov N, Kunev B, Tenchev K, Mitov I (2011) Nanosized copper ferrite materials: mechanochemical synthesis and characterization. J Solid State Chem 184:1153–1158

    Article  CAS  Google Scholar 

  • Moreira E, Fraga LA, Mendonça MH, Monteiro OC (2012) Synthesis, optical, and photocatalytic properties of a new visible-light-active ZnFe2O4-TiO2 nanocomposite material. J Nanopart Res 14:1–10

    Article  Google Scholar 

  • Nilsen MH, Nordhei C, Ramstad AL, Nicholson DG, Poliakoff M, Cabanas A (2007) XAS (XANES and EXAFS) investigations of nanoparticulate ferrites synthesized continuously in near critical and supercritical water. J Phys Chem C 111:6252–6262

    Article  CAS  Google Scholar 

  • Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461

    Article  CAS  Google Scholar 

  • Pardeshi SK, Pawar RY (2011) SrFe2O4 complex oxide an effective and environmentally benign catalyst for selective oxidation of styrene. J Mol Catal A Chem 334:35–43

    Article  CAS  Google Scholar 

  • Park H, Choi W (2005) Photocatalytic conversion of benzene to phenol using modified TiO2 and polyoxometalates. Catal Today 101:291–297

    Article  CAS  Google Scholar 

  • Pradeep A, Priyadharsini P, Chandrasekaran G (2011) Structural, magnetic and electrical properties of nanocrystalline zinc ferrite. J Alloys Compd 509:3917–3923

    Article  CAS  Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJJ (2012) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 45. doi: 10.1021/ar300029v

    Google Scholar 

  • Rajeshwar K (2011) Solar energy conversion and environmental remediation using inorganic semiconductor-liquid interfaces: the road traveled and the way forward. J Phys Chem Lett 2:1301–1309

    Article  CAS  Google Scholar 

  • Rajeshwar K, De Tacconi NR, Timmaji HK (2012) New-generation oxide semiconductors for solar energy conversion and environmental remediation. J Nano Res 17:185–191

    Article  CAS  Google Scholar 

  • Rana S, Rawat J, Misra RDK (2005) Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2-NiFe2O4 biomaterial system. Acta Biomater 1:691–703

    Article  CAS  Google Scholar 

  • Rawat J, Rana S, Srivastava R, Misra RDK (2007) Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Mater Sci Eng C 27:540–545

    Article  CAS  Google Scholar 

  • Salunkhe AB, Khot VM, Phadatare MR, Pawar SH (2012) Combustion synthesis of cobalt ferrite nanoparticles – influence of fuel to oxidizer ratio. J Alloys Compd 514:91–96

    Article  CAS  Google Scholar 

  • Schwitzgebel J, Ekerdt JG, Gerischer H, Heller A (1995) Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions. J Phys Chem 99:5633–5638

    Article  CAS  Google Scholar 

  • Serpone N, Emeline AV (2012) Semiconductor photocatalysis – past, present, and future outlook. J Phys Chem Lett 3:673–677

    Article  CAS  Google Scholar 

  • Serpone N, Emeline AV, Horikoshi S (2009) Photocatalysis and solar energy conversion (chemical aspects). Photochemistry 37:300–361

    Article  CAS  Google Scholar 

  • Serpone N, Emeline AV, Horikoshi S, Kuznetsov VN, Ryabchuk VK (2012) On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s. Photochem Photobiol Sci 11:1121–1150

    Article  CAS  Google Scholar 

  • Shchukin DG, Ustinovich EA, Sviridov DV, Kulak AI (2004) Titanium and iron oxide-based magnetic photocatalysts for oxidation of organic compounds and sulfur dioxide. High Energ Chem 38:167–173

    Article  CAS  Google Scholar 

  • Shihong X, Daolun F, Wenfeng S (2009) Preparations and photocatalytic properties of visible-light-active zinc ferrite-doped TiO2 photocatalyst. J Phys Chem C 113:2463–2467

    Article  Google Scholar 

  • Su M, He C, Sharma VK, Abou Asi M, Xia D, Li X-Z, Deng H, Xiong Y (2012) Mesoporous zinc ferrite: synthesis, characterization, and photocatalytic activity with H2O2/visible light. J Hazard Mater 211–212:95–103

    Article  Google Scholar 

  • Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/Gold nanocomposites. Effect of metal particle size on the fermi level eqilibration. J Am Chem Soc 126:4943–4950

    Article  CAS  Google Scholar 

  • Tamaura Y, Ueda Y, Matsunami J, Hasegawa N, Nezuka M, Sano T, Tsuji M (1999) Solar hydrogen production by using ferrites. Sol Energ 65:55–57

    Article  CAS  Google Scholar 

  • Tan D, Bi D, Shi P, Xu S (2012) Preparation and photocatalytic property of TiO2/NiFe 2O4 composite photocatalysts. Adv Mater Res 518–523:775–779

    Article  Google Scholar 

  • Tao J, Luttrell T, Batzill M (2011) A two-dimensional phase of TiO2 with a reduced bandgap. Nat Chem 3:296–300

    Article  CAS  Google Scholar 

  • Teoh WY, Scott JA, Amal R (2012) Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 3:629–639

    Article  CAS  Google Scholar 

  • Tsoncheva T, Manova E, Velinov N, Paneva D, Popova M, Kunev B, Tenchev K, Mitov I (2010) Thermally synthesized nanosized copper ferrites as catalysts for environment protection. Catal Commun 12:105–109

    Article  CAS  Google Scholar 

  • Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122:178–192

    Article  CAS  Google Scholar 

  • Valenzuela MA, Bosch P, Jimenez-Becerrill J, Quiroz O, Paez AI (2002) Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4. J Photochem Photobiol A 148:177–182

    Article  CAS  Google Scholar 

  • WHO (2010) UNICEF Progress on sanitation and drinking-water 2010 update

    Google Scholar 

  • Xiong P, Fu Y, Wang L, Wang X (2012) Multi-walled carbon nanotubes supported nickel ferrite: a magnetically recyclable photocatalyst with high photocatalytic activity on degradation of phenols. Chem Eng J 195–196:149–157

    Article  Google Scholar 

  • Xu A, Yang M, Qiao R, Du H, Sun C (2007) Activity and leaching features of zinc-aluminum ferrites in catalytic wet oxidation of phenol. J Hazard Mater 147:449–456

    Article  CAS  Google Scholar 

  • Zhang G-Y, Sun Y-Q, Gao D-Z, Xu Y-Y (2010a) Quasi-cube ZnFe2O4 nanocrystals: hydrothermal synthesis and photocatalytic activity with TiO2 (Degussa P25) as nanocomposite. Mater Res Bull 45:755–760

    Article  CAS  Google Scholar 

  • Zhang S, Niu H, Cai Y, Zhao X, Shi Y (2010b) Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem Eng J 158:599–607

    Article  CAS  Google Scholar 

  • Zhao L, Li X, Zhao Q, Qu Z, Yuan D, Liu S, Hu X, Chen G (2010) Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal. J Hazard Mater 184:704–709

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V.K. Sharma and D.D. Dionysiou acknowledge support from the National Science Foundation grant (CBET 1236331) for ferrite research. C. He wishes to thank the National Natural Science Foundation of China (No. 20877025), National Natural Science Foundation of Guangdong Province (No. S2011010001836) and the Fundamental Research Funds for the Central Universities (No. 09lgpy20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virender K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sharma, V.K., He, C., Doong, Ra., Dionysiou, D.D. (2013). Water Depollution Using Ferrites Photocatalysts. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Green Materials for Energy, Products and Depollution. Environmental Chemistry for a Sustainable World, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6836-9_4

Download citation

Publish with us

Policies and ethics