Skip to main content
Log in

Optical and gas sensing properties of Cu-doped ZnO nanocrystalline thin films for sensor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped and Cu-doped ZnO thin films were prepared by spray pyrolysis technique. The prepared samples were characterized by X-ray diffraction (XRD), Field emission Scanning electron microscopy (FESEM), EDX, and UV–Vis absorption spectroscopy. Room temperature NH3 gas sensing properties of films were investigated for 5 ppm ammonia concentration. The X-ray diffraction patterns indicate a hexagonal wurtzite structure with polycrystalline nature in all the samples. A decrease in crystallite size with an increase in Cu concentration has been observed. UV–Vis spectroscopy evidences a decrease in transmittance with Cu concentration. Tauc’s plot shows a decrease in energy band gap values with doping. Nanoflake morphology was observed from the FESEM analysis. It has been noticed that the sharpness of the structure of the nanoflakes decreases with the intensification of the copper content in the ZnO lattice. The stoichiometry of Zn, Cu, and O is confirmed by EDX. Gas sensing analysis of the thin-film samples is reported in this work. The highest ammonia sensing response with the lowest recovery time is obtained for 2% Cu-doped ZnO with a response value of 98%. It is observed that with further doping the gas sensing response has been decreased. Based on the gas sensing study, the Cu-doped ZnO thin films is an efficient gas sensing active material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable.

5. References

  1. H. Ji, W. Zeng, Y. Li, Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale 11(47), 22664–22684 (2019)

    Article  CAS  Google Scholar 

  2. C. Hou, G. Tai, Y. Liu, X. Liu, Borophene gas sensor. Nano Res. 15(3), 2537–2544 (2022)

    Article  CAS  Google Scholar 

  3. V. Galstyan, A. Moumen, G.W.C. Kumarage, E. Comini, Progress towards chemical gas sensors: Nanowires and 2D semiconductors. Sens. Actuators, B Chem. 357, 131466 (2022)

    Article  CAS  Google Scholar 

  4. L. Yao, X. Tian, X. Cui, R. Zhao, M. Xiao, B. Wang, X. Xiao, Y. Wang, Two-dimensional TI3C3TX Mxene/SNO nanocomposites: Towards enhanced response and selective ammonia vapor sensor at room temperature. Sens. Actuators, B Chem. 358, 131501 (2022)

    Article  CAS  Google Scholar 

  5. W. Yang, B. Fang, X. Xiao, H. Meng, S. Liu, Hierarchical core-shell heterostructures of α-moo3 nanorods@nio nanosheets for significant detection of ethyl acetate vapor. Sens. Actuators, B Chem. 358, 131457 (2022)

    Article  CAS  Google Scholar 

  6. T. Li, D. Zhang, Q. Pan, M. Tang, S. Yu, UV enhanced NO2 gas sensing at room temperature based on coral-like tin diselenide/mofs-derived nanoflower-like tin dioxide heteronanostructures. Sens. Actuators, B Chem. 355, 131049 (2022)

    Article  CAS  Google Scholar 

  7. Z. Yuan, Q. Zhao, C. Xie, J. Liang, X. Duan, Z. Duan, S. Li, Y. Jiang, H. Tai, Gold-loaded tellurium nanobelts gas sensor for PPT-level NO2 detection at room temperature. Sens. Actuators, B Chem. 355, 131300 (2022)

    Article  CAS  Google Scholar 

  8. Q. Song, H. Zhao, J. Jia, L. Yang, W. Lv, Q. Gu, X. Shu, Effects of demineralization on the surface morphology, microcrystalline and thermal transformation characteristics of coal. J. Anal. Appl. Pyrol. 145, 104716 (2020)

    Article  CAS  Google Scholar 

  9. Dennany, L. (2021). Novel electrochemical and fluorescent materials for sensor applications. Reference Module in Biomedical Sciences.

  10. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, Photo-degradation of organic dyes: Simple chemical synthesis of Ni (OH) 2 nanoparticles, Ni/Ni (OH)2 and Ni/NiO magnetic nanocomposites. J. Mater. Sci.: Mater. Electron. 27(2), 1244–1253 (2015)

    Google Scholar 

  11. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, Synthesis, characterization and application of CO/CO3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  12. Y. Vijayakumar, P. Nagaraju, V. Yaragani, S.R. Parne, N.S. Awwad, M.V. Ramana Reddy, Nanostructured Al and Fe co-doped ZnO thin films for enhanced ammonia detection. Physica B 581, 411976 (2020)

    Article  CAS  Google Scholar 

  13. M. Mohamedi, F. Challali, T. Touam, D. Mendil, S. Ouhenia, A.H. Souici, D. Djouadi, A. Chelouche, Role of substrate and annealing on microstructural, optoelectronic and luminescence properties of RF magnetron sputtered AZO thin films in confocal configuration. J. Lumin. 244, 118739 (2022)

    Article  CAS  Google Scholar 

  14. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, Hydrothermal synthesis of nickel hydroxide nanostructures and flame retardant poly vinyl alcohol and cellulose acetate nanocomposites. J. Nanostruct. 6, 80–85 (2016)

    CAS  Google Scholar 

  15. N. Patra, M. Manikandan, V. Singh, I.A. Palani, Investigations on LSPR effect of Cu/Al nanostructures on ZnO nanorods towards photodetector applications. J. Lumin. 238, 118331 (2021)

    Article  CAS  Google Scholar 

  16. R. Ranjan, M. Raja Sekhar, R. Shukla, R. Laha, D.S. Pandey, Comparative studies of ZnO thin films grown by electron beam evaporation, pulsed laser and RF sputtering technique for optoelectronics applications. Appl. Phys. A 126, 1–10 (2020)

    Google Scholar 

  17. A. Farrag, M. Hussien, I.S. Yahia, Synthesis and optical analysis ofnanostructured F-doped ZnO thin films by spray pyrolysis: Transparent electrode forphotocatalytic applications. Opt. Mater. 114, 110894 (2021)

    Article  Google Scholar 

  18. D.-C. Tsai, F.-S. Shieu, Thickness dependence of the structural, electrical, and optical properties of amorphous indium zinc oxide thin films. J. Alloys Compd. 743, 603–609 (2017)

    Article  Google Scholar 

  19. R. Savari, J. Rouhi, O. Fakhar, S. Kakooei, D. Pourzadeh, O. Jahanbakhsh, S. Shojaei, Development of photo-anodes based on strontium doped zinc oxide-reduced graphene oxide nanocomposites for improving performance of dye-sensitized solar cells. Intern Ceram (2021). https://doi.org/10.1016/j.ceramint.2021.08.079

    Article  Google Scholar 

  20. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure ZN0.35FE2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  21. I. Ameur, B. Boudine, M. Laidoudi, M. Khennoucha, V. Brien, D. Horwat, M. Sebais, O. Halimi, Influence of magnesium doping on microstructure, optical and photocatalytic activity of zinc oxide thin films synthesis by sol-gel route. Appl. Phys. A Mater. Sci. Process. 127, 331 (2021)

    Article  CAS  Google Scholar 

  22. K. Deva Arun Kumar, P. Mele, J.S. Ponraj, K. Haunsbhavi, S. Varadharajaperumal, D. Alagarasan, H. Algarni, B. Angadi, P. Murahari, K. Ramesh, Methanol solvent effect on photo sensing performance of AZO thin films grown bynebulizer spray pyrolysis. Semicond. Sci. Technol. 35(8), 85013 (2020)

    Article  Google Scholar 

  23. A. Dey, S. Roy, S.K. Sarkar, Synthesis, fabrication and characterization of ZnO-Based thin films prepared by sol-gel process and H2Gas sensing performance. J. Mater. Eng. Perform. 27(6), 2701–2707 (2018)

    Article  CAS  Google Scholar 

  24. R.S. Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Tuning the selectivity of NH 3 gas sensing response using Cu-doped ZnO nanostructures. Sens. Actuators A: Phys. 269, 331–341 (2017)

    Article  Google Scholar 

  25. V.L. Patil, S.A. Vanalakar, N.L. Tarwal, A.P. Patil, T.D. Dongale, J.H. Kim, P.S. Patil, Construction of Cu doped ZnO nanorods by chemical methodfor Low-temperature detection of NO2 gas. Sens. Actuators, A 299, 111611 (2019)

    Article  CAS  Google Scholar 

  26. J.-H. Kim, A. Mirzaei, H. Woo Kim, P. Wu, S.S. Kim, Design of supersensitive and selective ZnO-nanofiber-based sensors for H2 gas sensing byelectron-beam irradiation. Sens. Actuators, B Chem. 293, 210–223 (2019)

    Article  CAS  Google Scholar 

  27. V.S. Bhati, M. Hojamberdiev, M. Kumar, The enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 6, 46–62 (2020)

    Article  Google Scholar 

  28. A.M. Jasim, A.S.J. Al-Zubaydi, R.S. Zamel, Influence of heat treatment on the characteristic of SnO2 thin films for gas sensor application. J. Phys: Conf. Ser. 1795, 12034 (2021)

    CAS  Google Scholar 

  29. Y. Kong, Y. Li, X. Cui, L. Su, D. Ma, T. Lai, L. Yao, X. Xuechun, Y. Wang, SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: A review. Nano Mater. Sci. (2021). https://doi.org/10.1016/j.nanoms.2021.05.006

    Article  Google Scholar 

  30. O. Alev, N. Sarıca, O. Özdemir, L.Ç. Arslan, S. Büyükköse, Z.Z. Öztürk, Cu-doped ZnO nanorods based QCM sensor for hazardous gases. J. Alloy. Compd. 826, 154177 (2020). https://doi.org/10.1016/j.jallcom.2020.154177)

    Article  CAS  Google Scholar 

  31. V.S. Kamble, Y.H. Navale, V.B. Patil, N.K. Desai, S.T. Salunkhe, Enhanced NO2 gas sensing performance of Ni-doped ZnO nanostructures. J. Mater. Sci.: Mater. Electron. 32(2), 2219–2233 (2021)

    CAS  Google Scholar 

  32. R.S. Ganesh, V.L. Patil, E. Durgadevi, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Growth of Fe doped ZnO nanoellipsoids for selective NO2 gas sensing application. Chem. Phys. 734, 136725 (2019)

    Google Scholar 

  33. S. Suresh Kumar, B. Venkat Achalapathy, T.M. Sridhar, Enhanced H2S gas sensing properties of Mn doped ZnO nanoparticles—an impedance spectroscopic investigation. Mater. Res. Exp. 6(7), 75009 (2019)

    Article  CAS  Google Scholar 

  34. J. Xu, S. Li, L. Li, L. Chen, Y. Zhu, Facile fabrication and superior gas sensing properties of sponge like Co-doped ZnO microspheres for ethanol sensors. Ceram. Int. 44(14), 16773–16780 (2018)

    Article  CAS  Google Scholar 

  35. V. Khorramshahi, J. Karamdel, R. Yousefi, Acetic acid sensing of Mg-doped ZnO thin films fabricated by the sol–gel method. J. Mater. Sci.: Mater. Electron. 29(17), 14679–14688 (2018)

    CAS  Google Scholar 

  36. C. Dong, R. Zhao, L. Yao, Y. Ran, X. Zhang, Y. Wang, A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. J. Alloy. Compd. 820, 153194 (2020)

    Article  CAS  Google Scholar 

  37. T. Çorlu, I. Karaduman Er, S. Galioglu, B. Akata, M. Yıldırım, S. Acar, Low level NO gas sensing properties of Cu doped ZnO thin films prepared by SILAR method. Mater. Lett. 212, 292–295 (2017)

    Article  Google Scholar 

  38. P.S. Shewale, K.-S. Yun, Synthesis and characterization of Cu-doped ZnO/RGO nanocomposites for room-temperature H2S gas sensor. J. Alloy. Compd. 837, 155527 (2020)

    Article  CAS  Google Scholar 

  39. Y. Deng, Semiconducting metal oxides: Microstructure and sensing performance. Semicond. Metal Oxides Gas Sensing (2019). https://doi.org/10.1007/978-981-13-5853-1_5

    Article  Google Scholar 

  40. M. Carbone, CQDs@NiO: An efficient tool for CH4 sensing. Appl. Sci. 10(18), 6251 (2020)

    Article  CAS  Google Scholar 

  41. X.-X. Chen, L. Chen, G. Li, L.-X. Cai, G.-Y. Miao, Z. Guo, F.-L. Meng, Selectively enhanced gas-sensing performance to n-butanol based on uniform CdO-decorated porous ZnO nanobelts. Sens. Actuators, B Chem. 334, 129667 (2021)

    Article  CAS  Google Scholar 

  42. A. Boukhari, B. Deghfel, A. Mahroug, R. Amari, N. Selmi, S. Kheawhom, A.A. Mohamad, Thickness effect on the properties of Mn-doped ZnO thin films synthesis by sol-gel and comparison to first-principles calculations. Ceram. Int. 47(12), 17276–17285 (2021)

    Article  CAS  Google Scholar 

  43. S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Güell, M. Kumar, K. Awasthi, Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens. Actuators, B Chem. 292, 24–31 (2019)

    Article  CAS  Google Scholar 

  44. D. Pal, J. Singhal, A. Mathur, A. Singh, S. Dutta, S. Zollner, S. Chattopadhyay, Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films. Appl. Surf. Sci. 421, 341–348 (2017)

    Article  CAS  Google Scholar 

  45. K. Kandpal, J. Singh, N. Gupta, C. Shekhar, Effect of thickness on the properties of ZnO thin films prepared by reactive RF Sputtering. J. Mater. Sci.: Mater. Electron. 29(17), 14501–14507 (2018)

    CAS  Google Scholar 

  46. V. Kumar, S.K. Singh, H. Sharma, S. Kumar, M.K. Banerjee, A. Vij, Investigation of structural and optical properties of ZnO thin films of different thicknesses grown by pulsed laser deposition method. Physica B 552, 221–226 (2019)

    Article  CAS  Google Scholar 

  47. J. Li, J. Gong, J. Zhu, Z. Ma, Y. Zhao, Y. Kong, Z. Chi, G. Chen, X. Xiao, Double-sided heat-exchange CBD system for homogeneous Zn (O, S) thin films in highly efficient cigs solar devices. ACS Appl. Energy Mater. 3(11), 11242–11248 (2020)

    Article  CAS  Google Scholar 

  48. Z. El Khalidi, E. Comini, B. Hartiti, A. Moumen, H.M.M. Munasinghe Arachchige, S. Fadili, P. Thevenin, A. Kamal, Effect of vanadium doping on ZnO sensing properties synthesized by spray pyrolysis. Mater. Des. 139, 56–64 (2018)

    Article  Google Scholar 

  49. L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators, A 267, 242–261 (2017)

    Article  CAS  Google Scholar 

  50. R. Mariappan, V. Ponnuswamy, R. Suresh, P. Suresh, A. Chandra Bose, M. Ragavendar, Role of substrate temperature on the properties of Na-doped ZnO thin film nanorods and performance of ammonia gas sensors using nebulizer spray pyrolysis technique. J. Alloy. Compd. 582, 387–391 (2014)

    Article  CAS  Google Scholar 

  51. A. Anusha, A., Ani, A., Poornesh, P., & Kulkarni, S. D., Role of cu in the enhancement of NH3 sensing performance of spray pyrolyzed WO3 nanostructures. Mater. Sci. Semicond. Process. 133, 105967 (2021)

    Article  CAS  Google Scholar 

  52. R.S. Ganesh, E. Durgadevi, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Tuning the selectivity of NH3 gas sensing response using Cu-doped ZnO nanostructures. Sens. Actuators, A 269, 331–341 (2018)

    Article  CAS  Google Scholar 

  53. G.H. Mhlongo, K. Shingange, Z.P. Tshabalala, B.P. Dhonge, F.A. Mahmoud, B.W. Mwakikunga, D.E. Motaung, Room temperature ferromagnetism and gas sensing in ZnO nanostructures: Influence of intrinsic defects and Mn, co, Cu doping. Appl. Surf. Sci. 390, 804–815 (2016)

    Article  CAS  Google Scholar 

  54. K.R. Devi, G. Selvan, K. Hari Prasad, M. Karunakaran, K. Kasirajan, V. Ganesh, S. AlFaify, Effect of cu2+ doping on the structural, optical, and vapor-sensing properties of ZnO thin films prepared by Silar method. J. Mater. Sci.: Mater. Electron. 31(19), 16548–16560 (2020)

    CAS  Google Scholar 

  55. T.V.K. Karthik, A. Maldonado, M. Olvera, A.G. Hernández, J. Vega-Pérez, H. Gómez-Pozos, Copper-doped ZnO thin films deposited by spray pyrolysis: effect of water content in starting solution on methylene blue degradation by photocatalysis. J. Electron. Mater. 50(10), 5542–5552 (2021)

    Article  CAS  Google Scholar 

  56. S. Anitha, S. Muthukumaran, Structural Optical and antibacterial investigation of La, Cu dual doped ZnO nanoparticles prepared by co-precipitation method. Mater. Sci. Eng.: C 108, 110387 (2020)

    Article  CAS  Google Scholar 

  57. H. Song, L. Ma, S. Pei, C. Dong, E. Zhu, B. Zhang, Quantitative detection of formaldehyde and ammonia using an yttrium-doped ZnO sensor array combined with a back-propagation neural network model. Sens. Actuators, A 331, 112940 (2021)

    Article  CAS  Google Scholar 

  58. F. Sarf, I. Karaduman Er, E. Yakar, S. Acar, The role of rare-earth metal (Y, Ru and cs)-doped ZnO thin films in NH3 gas sensing performances at room temperature. J. Mater. Sci.: Mater. Electron. 31(13), 10084–10095 (2020)

    CAS  Google Scholar 

  59. S. Marouf, A. Beniaiche, H. Guessas, A. Azizi, Morphological, structural and optical properties of ZnO thin films deposited by Dip Coating Method. Mater. Res. 20(1), 88–95 (2016)

    Article  Google Scholar 

  60. G.K. Mani, J.B.B. Rayappan, Influence of copper doping on structural, optical and sensing properties of spray deposited zinc oxide thin films. J. Alloy. Compd. 582, 414–419 (2014)

    Article  CAS  Google Scholar 

  61. T. Elavarasan, S. Ernest, S. Fairose, Influence of cobalt doping on the structural, optical, topographical and sensing properties of spray deposited zinc oxide thin films. Mater. Today: Pro. 38, 2720–2724 (2021)

    CAS  Google Scholar 

  62. Y. Gong, X. Wu, X. Li, A. Wang, M. Zhang, Y. Chen, Enhanced acetone sensing properties of Pt@Al-doped ZnO core-shell nanoparticles. Sens. Actuators, B Chem. 329, 129153 (2021)

    Article  CAS  Google Scholar 

  63. F. Ghahramanifard, A. Rouhollahi, O. Fazlolahzadeh, Electrodeposition of Cu-doped p-type ZnO nanorods; effect of CU doping on structural, optical and photoelectrocatalytic property of ZnO nanostructure. Superlattices Microstruct. 114, 1–14 (2018)

    Article  CAS  Google Scholar 

  64. K.R. Devi, G. Selvan, M. Karunakaran, K. Kasirajan, L.B. Chandrasekar, M. Shkir, S. AlFaify, Silar-coated mg-doped ZnO thin films for ammonia vapor sensing applications. J. Mater. Sci.: Mater. Electron. 31(13), 10186–10195 (2020)

    CAS  Google Scholar 

  65. C. Yin, J. Wu, J. Zhou, D. Zhang, Z. Liu, X. Liu, L. Liu, Z. Zhan, S. Garner, Y. Fu, Enhancing the sensitivity of flexible acoustic wave ultraviolet photodetector with graphene-quantum-dots decorated ZnO nanowires. Sens. Actuators, A 321, 112590 (2021)

    Article  CAS  Google Scholar 

  66. A. Guler, L. Arda, N. Dogan, C. Boyraz, E. Ozugurlu, The annealing effect on microstructure and ESR properties of (Cu/Ni) co-doped ZnO nanoparticles. Ceram. Int. 45(2), 1737–1745 (2019)

    Article  CAS  Google Scholar 

  67. M.M.A. Ahmed, W.Z. Tawfik, M.A.K. Elfayoumi, M. Abdel-Hafiez, S.I. El-Dek, Tailoring the optical and physical properties of La doped zno nanostructured thin films. J. Alloy. Compd. 791, 586–592 (2019)

    Article  CAS  Google Scholar 

  68. K.V. Chandekar, M. Shkir, B.M. Al-Shehri, S. AlFaify, R.G. Halor, A. Khan, K.S. Al-Namshah, M.S. Hamdy, Visible light sensitive CU doped ZnO: Facile synthesis, characterization and high photocatalytic response. Mater. Charact. 165, 110387 (2020)

    Article  CAS  Google Scholar 

  69. A.S. Ismail, M.H. Mamat, N.M. Sin, M.F. Malek, A.S. Zoolfakar, A.B. Suriani, A. Mohamed, M.K. Ahmad, M. Rusop, Fabrication of hierarchical sn-doped ZnO nanorod arrays through sonicated sol−gel immersion for room temperature, resistive-type humidity sensor applications. Ceram. Intern. 42(8), 9785–9795 (2016)

    Article  CAS  Google Scholar 

  70. M. Oztas, M. Bedir, Thickness dependence of structural, electrical and optical properties of sprayed ZnO:CU Films. Thin Solid Films 516(8), 1703–1709 (2008)

    Article  Google Scholar 

  71. C. Devi, T. Rao, One step synthesis and characterization of copper doped sulfated titania and its enhanced photocatalytic activity in visible light by degradation of methyl orange. Chinese J. Chem. Eng. 24, 475–483 (2015)

    Google Scholar 

  72. R.A. Ismail, A. Al-Naimi, A.A. Al-Ani, Preparation and characteristics study of ZnO: (al, Cu, I) thin films by chemical spray pyrolysis. e-J. Surface Sci. Nanotechnol. 4, 636–639 (2006)

    Article  CAS  Google Scholar 

  73. M. Ferhat, A. Zaoui, R. Ahuja, Magnetism and band gap narrowing in Cu-doped ZnO. Appl. Phys. Lett. 94(14), 142502 (2009)

    Article  Google Scholar 

  74. S. Yu, L. Zhao, R. Liu, C. Zhang, H. Zheng, Y. Sun, L. Li, Performance enhancement of Cu-based AZO multilayer thin films via graphene fence engineering for organic solar cells. Sol. Energy Mater. Sol. Cells 183, 66–72 (2018)

    Article  CAS  Google Scholar 

  75. J. Gonzalez-Vidal, M. Olvera, A. Maldonado, A. Reyes, M. Meléndez-Lira, CO sensitivity of undoped-ZnO, Cr-ZnO and Cu-ZnO thin films obtained by spray pyrolysis. Revista Mexicana de Fisica Supplement 52, 6–10 (2006)

    CAS  Google Scholar 

  76. R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas–sensor applications: A review. Nano-Micro Letters 7(2), 97–120 (2015)

    Article  Google Scholar 

  77. H. Liu, Z. Wang, G. Cao, G. Pan, X. Yang, M. Qiu, C. Sun, J. Shao, Z. Li, H. Zhang, Construction of hollow NiO/ZnO p-n heterostructure for ultrahigh performance toluene gas sensor. Mater. Sci. Semicond. Process. 141, 106435 (2022)

    Article  CAS  Google Scholar 

  78. C.-L. Hsu, T.-J. Hsueh, S.-P. Chang, Preparation of ZnO nanoflakes and a nanowire-based photodetector by localized oxidation at low temperature. J. Electrochem. Soc. 155, K59–K62 (2008)

    Article  CAS  Google Scholar 

  79. P. Bharathi, M. Krishna Mohan, V. Shalini, S. Harish, M. Navaneethan, J. Archana, M. Ganesh Kumar, P. Dhivya, S. Ponnusamy, M. Shimomura, Y. Hayakawa, Growth and influence of Gd doping on ZnO nanostructures for enhancedoptical, structural properties and gas sensing applications. Appl. Surf. Sci. 499, 143857 (2020)

    Article  CAS  Google Scholar 

  80. R. Pandeeswari, B.G. Jeyaprakash, High sensing response of β-Ga2O3 thin film towards ammonia vapours: Influencing factors at room temperature. Sens. Actuators, B Chem. 195, 206–214 (2014)

    Article  CAS  Google Scholar 

  81. V.R. Bagul, G.R. Bhagure, S.A. Ahire, A.V. Patil, V.A. Adole, amp; Koli, P. B., Fabrication, characterization and exploration of cobalt (II) ion doped, modified zinc oxide thick film sensor for gas sensing characteristics of some pernicious gases. J. Indian Chem. Soc. 98(11), 100187 (2021)

    Article  CAS  Google Scholar 

  82. U. Godavarti, V.D. Mote, M.V.R. Reddy, P. Nagaraju, Y.V. Kumar, K.T. Dasari, M.P. Dasari, Precipitated cobalt doped ZnO nanoparticles with enhanced low temperature xylene sensing properties. Physica B 553, 151–160 (2019)

    Article  CAS  Google Scholar 

  83. A. Mirzaei, J.-H. Kim, H.W. Kim, S.S. Kim, Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: A review. J. Mater. Chem. C 6(16), 4342–4370 (2018)

    Article  CAS  Google Scholar 

  84. S. Ghosh, D. Majumder, A. Sen, S. Roy, Facile Sonochemical synthesis of zinc oxide nanoflakes at room temperature. Mater. Lett. 130, 215–217 (2014)

    Article  CAS  Google Scholar 

  85. Q. Hu, J. He, J. Chang, J. Gao, J. Huang, L. Feng, Needle-shaped wo3 nanorods for triethylamine gas sensing. ACS Appl. Nano Mater. 3(9), 9046–9054 (2020)

    Article  CAS  Google Scholar 

  86. N. Sarıca, O. Alev, L.Ç. Arslan, Z.Z. Öztürk, Characterization and gas sensing performances of noble metals decorated CuO nanorods. Thin Solid Films 685, 321–328 (2019)

    Article  Google Scholar 

  87. Z. Yang, D. Zhang, D. Wang, Carbon monoxide gas sensing properties of metal-organic frameworks-derived tin dioxide nanoparticles/molybdenum diselenidenanoflowers. Sens. Actuators, B Chem. 304, 127369 (2020)

    Article  CAS  Google Scholar 

  88. V. Najafi, S. Zolghadr, S. Kimiagar, Remarkable reproducibility and significant sensitivity of ZnO nanoparticles covered by chromium (III) oxide as a hydrogen sulfide gas sensor. Optik 182, 249–256 (2019)

    Article  CAS  Google Scholar 

  89. A. Ani, P. Poornesh, K.K. Nagaraja, G. Hegde, E. Kolesnikov, I.V. Shchetinin, A. Antony, S.D. Kulkarni, Evaluation of spray pyrolysed ZnOnanostructures for CO gas sensing at low concentration. J. Mater. Sci. Mater.: Electron. 32(17), 22599–22616 (2021)

    Article  CAS  Google Scholar 

  90. F.-L. Gong, M.-X. Peng, L.-J. Yue, J.-L. Chen, K.-F. Xie, Y.H. Zhang, Design of p-n heterojunction on mesoporous ZnO/Co3O4 nanosheets for triethylamine sensor. Chem. Phys. Lett. 779, 138891 (2021)

    Article  CAS  Google Scholar 

  91. B. Selvaraj, J.B. Balaguru Rayappan, K. Jayanth Babu, Influence of calcination temperature on the growth of electrospun multi-junction ZnO nanowires: A room temperature ammonia sensor. Mater. Sci. Semicond. Process. 112, 105006 (2020)

    Article  CAS  Google Scholar 

  92. K.-C. Hsu, T.-H. Fang, Y.-J. Hsiao, Z.-J. Li, Rapid detection of low concentrations of H2S using CuO-doped ZnO nanofibers. J. Alloy. Compd. 852, 157014 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Contributions

SDL: initial analysis, original drafting, Methodology, Data collection and analysis, and Software. MBA: Software, and initial drafting and editing. VDM: Supervision, Data collection, Investigation, Supervision, and Writing—Reviewing and Editing.

Corresponding author

Correspondence to V. D. Mote.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokhande, S.D., Awale, M.B. & Mote, V.D. Optical and gas sensing properties of Cu-doped ZnO nanocrystalline thin films for sensor applications. J Mater Sci: Mater Electron 33, 25063–25077 (2022). https://doi.org/10.1007/s10854-022-09213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09213-6

Navigation