Skip to main content
Log in

Analysis of the valence state of tin in ZnSnOx thin-film transistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc tin oxide (ZTO) thin-film transistors (TFTs) were fabricated using the co-sputtering method with Sn and zinc oxide (ZnO) as targets. The Sn-sputtering power was varied to optimize the device performance of the ZTO TFTs. The chemical states of Sn3d and O 1s at the surface of the ZTO films were analyzed by X-ray photoelectron spectroscopy to explain the effect of different Sn contents of the ZTO films on the device performance of the ZTO TFTs. The oxygen vacancy and the ratio of Sn4+ and Sn2+ were found to significantly effect on the device performance. When the ZTO film has the highest concentration of Sn4+ and lowest content of oxygen vacancy, the device achieves the optimal mobility of 15.67 cm2/Vs, and the on–off current ratio reaches 1.17 × 108.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

Not applicable.

References

  1. D. Ji, J. Jang, J.H. Park et al., Recent progress in the development of backplane thin film transistors for information displays. J. Inf. Disp. 22(1), 1–11 (2021)

    Article  CAS  Google Scholar 

  2. K. Nomura, H. Ohta, A. Takagi et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004)

    Article  CAS  Google Scholar 

  3. J.Y. Kwon, D.J. Lee, K.B. Kim, Review paper: transparent amorphous oxide semiconductor thin film transistor. Electron. Mater. Lett. 7(1), 1–11 (2011)

    Article  CAS  Google Scholar 

  4. Y.B. Son, B. Frost, Y.K. Zhao et al., Monolithic integration of high-voltage thin-film electronics on low-voltage integrated circuits using a solution process. Nat. Electron. 2(11), 540–548 (2019)

    Article  CAS  Google Scholar 

  5. T. Lei, L.L. Shao, Y.Q. Zheng et al., Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 10, 10 (2019)

    Article  Google Scholar 

  6. B.W. Zhang, D. Fang, X. Fang et al., InAs/InAsSb type-II superlattice with near room-temperature long-wave emission through interface engineering. Rare Met. 41(3), 982–991 (2022)

    Article  CAS  Google Scholar 

  7. L. Shao, H.L. Wang, Y. Yang et al., Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices. ACS Appl. Mater. Interfaces 11(12), 12161–12169 (2019)

    Article  CAS  Google Scholar 

  8. G.J. Jeon, S.H. Lee, S.H. Lee et al., Highly sensitive active-matrix driven self-capacitive fingerprint sensor based on oxide thin film transistor. Sci. Rep. 9, 10 (2019)

    Article  Google Scholar 

  9. T. Kamiya, K. Nomura, H. Hosono, Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 11(4), 044305 (2010)

    Article  Google Scholar 

  10. J.S. Park, W.J. Maeng, H.S. Kim et al., Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 520(6), 1679–1693 (2012)

    Article  CAS  Google Scholar 

  11. R. Branquinho, D. Salgueiro, A. Santa et al., Towards environmental friendly solution-based ZTO/AlOx TFTs. Semicond. Sci. Technol. 30(2), 8 (2015)

    Article  Google Scholar 

  12. G. Wang, B.Z. Chang, H. Yang et al., Implementation of self-aligned top-gate amorphous zinc tin oxide thin-film transistors. IEEE Electron Device Lett. 40(6), 901–904 (2019)

    Article  CAS  Google Scholar 

  13. X. Yang, S. Jiang, J. Li et al., Improvement of the long-term stability of ZnSnO thin film transistors by tungsten incorporation using a solution-process method. RSC Adv. 8(37), 20990–20995 (2018)

    Article  CAS  Google Scholar 

  14. S. Vogt, H. Von Wenckstern, M. Grundmann, MESFETs and inverters based on amorphous zinc–tin–oxide thin films prepared at room temperature. Appl. Phys. Lett. 113(13), 5 (2018)

    Article  Google Scholar 

  15. Y.Y. Cong, D.D. Han, X.L. Zhou et al., High-performance Al–Sn–Zn–O thin-film transistor with a quasi-double-channel structure. IEEE Electron Device Lett. 37(1), 53–56 (2016)

    Article  CAS  Google Scholar 

  16. Z. Wang, J. Zheng, M. Li et al., Solution-based SnGaO thin-film transistors for Zn- and In-free oxide electronic devices. Appl. Phys. Lett. 113(12), 5 (2018)

    Article  Google Scholar 

  17. Z.G. Wang, Q. Wu, M.M. Li et al., Doping effects of various carrier suppressing elements on solution-processed SnOx-based thin-film transistors. IEEE Trans. Electron Devices 66(8), 3371–3375 (2019)

    Article  CAS  Google Scholar 

  18. S.-J. Seo, C.G. Choi, Y.H. Hwang et al., High performance solution-processed amorphous zinc tin oxide thin film transistor. J. Phys. D 42(3), 5 (2009)

    Article  Google Scholar 

  19. A. Zhussupbekova, D. Caffrey, K. Zhussupbekov et al., Low-cost, high-performance spray pyrolysis-grown amorphous zinc tin oxide: the challenge of a complex growth process. ACS Appl. Mater. Interfaces 12(41), 46892–46899 (2020)

    Article  CAS  Google Scholar 

  20. C.-G. Lee, A. Dodabalapur, Solution-processed zinc–tin oxide thin-film transistors with low interfacial trap density and improved performance. Appl. Phys. Lett. 96(24), 3 (2010)

    Article  Google Scholar 

  21. C.R. Allemang, T.H. Cho, O. Trejo et al., High-performance zinc tin oxide TFTs with active layers deposited by atomic layer deposition. Adv. Electron. Mater. 6(7), 10 (2020)

    Article  Google Scholar 

  22. A. Liu, Z. Guo, G. Liu et al., Redox chloride elimination reaction: facile solution route for indium-free, low-voltage, and high-performance transistors. Adv. Electron. Mater. 3(3), 10 (2017)

    Article  Google Scholar 

  23. C. Fernandes, A. Santa, A. Santos et al., A sustainable approach to flexible electronics with zinc–tin oxide thin-film transistors. Adv. Electron. Mater. 4(7), 10 (2018)

    Article  Google Scholar 

  24. Y.G. Kim, R.N. Bukke, J. Lee et al., Formation of F-doped offset region for spray pyrolyzed self-aligned coplanar amorphous zinc–tin–oxide thin-film transistor by NF3 plasma treatment. IEEE Trans. Electron Devices 68(3), 1057–1062 (2021)

    Article  CAS  Google Scholar 

  25. C.C. Hsu, C.H. Chou, Y.T. Chen et al., A study of solution-processed zinc–tin–oxide semiconductors for thin-film transistors. IEEE Trans. Electron Devices 66(6), 2631–2636 (2019)

    Article  CAS  Google Scholar 

  26. Q. Zhang, C. Ruan, H.Y. Gong et al., Low-temperature and high-performance ZnSnO thin film transistor activated by lightwave irradiation. Ceram. Int. 47(14), 20413–20421 (2021)

    Article  CAS  Google Scholar 

  27. N. Nguyen, B. Mccall, R. Alston et al., The effect of annealing temperature on the stability of gallium tin zinc oxide thin film transistors. Semicond. Sci. Technol. 30(10), 9 (2015)

    Article  Google Scholar 

  28. J. Su, Q. Wang, Y. Ma et al., Amorphous InZnO:Li/ZnSnO: Li dual-active-layer thin film transistors. Mater. Res. Bull. 111, 165–169 (2019)

    Article  CAS  Google Scholar 

  29. S. Yan, Z. He, G. Zhou et al., Hexagonal Zn2SnO4 nanoplates self-doped with Sn4+ ions towards efficient photoreduction of CO2 into CH4. Mater. Sci. Semicond. Process. 130, 105818 (2021)

    Article  CAS  Google Scholar 

  30. B.H. Lee, D.-Y. Lee, A. Sohn et al., Direct investigation on energy bandgap of Si added ZnSnO system for stability enhancement by X-ray photoelectron spectroscopy. J. Alloys Compd. 715, 9–15 (2017)

    Article  CAS  Google Scholar 

  31. Y.Q. Cao, T. He, L.S. Zhao et al., Structure and phase transition behavior of Sn4+-doped TiO2 nanoparticles. J. Phys. Chem. C 113(42), 18121–18124 (2009)

    Article  CAS  Google Scholar 

  32. Y.Q. Cao, T. He, Y.M. Chen et al., Fabrication of rutile TiO2–Sn/anatase TiO2–N heterostructure and its application in visible-light photocatalysis. J. Phys. Chem. C 114(8), 3627–3633 (2010)

    Article  CAS  Google Scholar 

  33. M.G. Yun, C.H. Ahn, S.W. Cho et al., Dual electrical behavior of multivalent metal cation-based oxide and its application to thin-film transistors with high mobility and excellent photobias stability. ACS Appl. Mater. Interfaces 7(11), 6118–6124 (2015)

    Article  CAS  Google Scholar 

  34. M.S. Rajachidambaram, A. Pandey, S. Vilayurganapathy et al., Improved stability of amorphous zinc tin oxide thin film transistors using molecular passivation. Appl. Phys. Lett. 103(17), 171602 (2013)

    Article  Google Scholar 

  35. Y.S. Rim, D.L. Kim, W.H. Jeong et al., Effect of Zr addition on ZnSnO thin-film transistors using a solution process. Appl. Phys. Lett. 97(23), 233502 (2010)

    Article  Google Scholar 

  36. J. Park, K.T. Oh, D.H. Kim et al., High-performance zinc tin oxide semiconductor grown by atmospheric-pressure mist-CVD and the associated thin-film transistor properties. ACS Appl. Mater. Interfaces 9(24), 20656–20663 (2017)

    Article  CAS  Google Scholar 

  37. N. Mitoma, S. Aikawa, X. Gao et al., Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies. Appl. Phys. Lett. 104(10), 102103 (2014)

    Article  Google Scholar 

  38. Y.S. Shiah, K. Sim, S. Ueda et al., Unintended carbon-related impurity and negative bias instability in high-mobility oxide TFTs. IEEE Electron Device Lett. 42(9), 1319–1322 (2021)

    Article  CAS  Google Scholar 

  39. Y.Y. Choi, K.H. Choi, H. Lee et al., Nano-sized Ag-inserted amorphous ZnSnO3 multilayer electrodes for cost-efficient inverted organic solar cells. Sol. Energy Mater. Sol. Cells 95(7), 1615–1623 (2011)

    Article  CAS  Google Scholar 

  40. I. Kang, C.H. Park, E. Chong et al., Role of Si as carrier suppressor in amorphous Zn–Sn–O. Curr. Appl. Phys. 12, S12–S16 (2012)

    Article  Google Scholar 

  41. T. Kamiya, H. Hosono, Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2(1), 15–22 (2010)

    Article  Google Scholar 

  42. C.W. Shih, A. Chin, C.F. Lu et al., Remarkably high hole mobility metal-oxide thin-film transistors. Sci. Rep. 8, 6 (2018)

    Article  Google Scholar 

  43. H.Y. He, J.F. Huang, J. Fei et al., Structural, optical and electrical properties of p-cus: Cu+ and n-cus: Sn4+ films deposited with a chemical bath deposition. Recent Pat. Nanotechnol. 9(2), 139–145 (2015)

    Article  CAS  Google Scholar 

  44. M. Dimitrievska, T.B. Ivetić, A.P. Litvinchuk et al., Eu3+-doped wide band gap Zn2SnO4 semiconductor nanoparticles: structure and luminescence. J. Phys. Chem. C 120(33), 18887–18894 (2016)

    Article  CAS  Google Scholar 

  45. A. Mallick, D. Basak, Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs. Prog. Mater. Sci. 96, 86–110 (2018)

    Article  CAS  Google Scholar 

  46. M. Anwar, I.M. Ghauri, S.A. Siddiqi, An XPS study of amorphous thin films of mixed oxides In2O3–SnO2 system deposited by co-evaporation. Int. J. Mod. Phys. B 21(7), 1027–1042 (2007)

    Article  CAS  Google Scholar 

  47. A. Mallick, D. Basak, Comparative investigation on cation-cation (Al–Sn) and cation-anion (Al–F) co-doping in RF sputtered ZnO thin films: mechanistic insight. Appl. Surf. Sci. 410, 540–546 (2017)

    Article  CAS  Google Scholar 

  48. M. Song, Y. Wu, Y. Zhao et al., Structural insight on defect-rich tin oxide for smart band alignment engineering and tunable visible-light-driven hydrogen evolution. Inorg. Chem. 59(5), 3181–3192 (2020)

    Article  CAS  Google Scholar 

  49. Q. Liu, H.Q. Zhan, X.C. Huang et al., High visible light photocatalytic activity of SnO2-x nanocrystals with rich oxygen vacancy. Eur. J. Inorg. Chem. 2021(42), 4370–4376 (2021)

    Article  CAS  Google Scholar 

  50. M. Thirumoorthi, J. Thomas Joseph Prakash, Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique. J. Asian Ceram. Soc. 4(1), 124–132 (2018)

    Article  Google Scholar 

  51. S. Ruzgar, M. Caglar, The effect of Sn on electrical performance of zinc oxide based thin film transistor. J. Mater. Sci.: Mater. Electron. 30(1), 485–490 (2018)

    Google Scholar 

  52. Y.-M. Kim, K.-S. Jeong, H.-J. Yun et al., Investigation of zinc interstitial ions as the origin of anomalous stress-induced hump in amorphous indium gallium zinc oxide thin film transistors. Appl. Phys. Lett. 102(17), 4 (2013)

    Article  Google Scholar 

  53. Y.M. Kim, K.S. Jeong, H.J. Yun et al., Anomalous stress-induced hump effects in amorphous indium gallium zinc oxide TFTs. Trans. Electr. Electron. Mater. 13(1), 47–49 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to project support of Jilin Provincial Department of science and technology (Grant Nos. 20210203021SF and 20210506035ZP) and Jilin Provincial Department of education (Grant No. JJKH20220272KJ). The authors gratefully acknowledge the financial support from Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University in Changchun Province (Grant No. JLZHKF022021005).

Funding

This research was funded by Jilin Provincial Department of Education (Grant No. JJKH20220272KJ) and the Department of Science and Technology of Jilin Province (Grant Nos. 20210203021SF and 20210506035ZP).

Author information

Authors and Affiliations

Authors

Contributions

LG and ML: conceptualization and methodology. ML: data management. LG and XC: method. CW and ML: experimental validation. ML, XG, YC, and XY: project management. ML, FY, HW, YC, and XY: capital acquisition and resources. ML: writing—first draft preparation. LG and ML: writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Liang Guo or Xiaotian Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, M., Guo, L., Wang, C. et al. Analysis of the valence state of tin in ZnSnOx thin-film transistors. J Mater Sci: Mater Electron 33, 24785–24793 (2022). https://doi.org/10.1007/s10854-022-09190-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09190-w

Navigation