Skip to main content
Log in

Incorporation of ZnO Nanoparticles on Solution Processed Zinc Oxide Thin-Film Transistors

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, a simple, low-cost and reliable method for deposition of solution-processed Zinc oxide films with embedded ZnO nanoparticles (np-ZnO) at low deposition temperature is presented. The np-ZnO films are obtained by ultrasonic spray pyrolysis technique at 200 °C. The np-ZnO precursor solution is prepared at different nanoparticles content. After deposition, the np-ZnO films do not require any additional treatment. The np-ZnO films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and field emission scanning electron microscope. Moreover, a comparison of ZnO and np-ZnO based thin-film transistors (TFTs) is presented. The extracted field-effect mobility was 0.01 cm2/Vs for ZnO TFTs and 0.05 cm2/Vs for np-ZnO TFTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Oertel, M. Jank, E. Teuber, A. Bauer, L. Frey, High-mobility metal-oxide thin-film transistors by spray deposition of environmentally friendly precursors. Thin Solid Films 553, 114–117 (2014)

    Article  CAS  Google Scholar 

  2. M. Dominguez, F. Flores, A. Luna, J. Martinez, J. Luna-Lopez, S. Alcantara, P. Rosales, C. Reyes, A. Orduña, Impact of active layer thickness in thin-film transistors based on Zinc Oxide by ultrasonic spray pyrolysis. Solid State Electron. 109, 33–36 (2015)

    Article  CAS  Google Scholar 

  3. G. Adamopoulos, S. Thomas, P. Wöbkenberg, D. Bradley, M. McLachlan, T. Anthopoulos, High-mobility low-voltage ZnO and Li-doped ZnO transistors based on ZrO 2 High- k dielectric grown by spray pyrolysis in ambient air. Adv. Mater. 23, 1894–1898 (2011)

    Article  CAS  Google Scholar 

  4. S. Park, B. Kim, K. Kim, M. Kang, K. Lim, T. Lee, J. Myoung, H. Baik, J. Cho, Y. Kim, Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors. Adv. Mater. 24, 834–838 (2012)

    Article  CAS  Google Scholar 

  5. B. Sun, H. Sirringhaus, Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 5, 2408–2413 (2005)

    Article  CAS  Google Scholar 

  6. S. Meyers, J. Anderson, C. Hung, J. Thompson, J. Wager, D. Keszler, Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. J. Am. Chem. Soc. 130, 17603–17609 (2008)

    Article  CAS  Google Scholar 

  7. R. Street, Thin-film transistors. Adv. Mater. 21, 2007 (2009)

    Article  CAS  Google Scholar 

  8. G. Adamopoulos, A. Bashir, W. Gillin, S. Georgakopoulos, M. Shkunov, M. Baklar, N. Stingelin, D. Bradley, T. Anthopoulos, Structural and electrical characterization of ZnO films grown by spray pyrolysis and their application in thin- film transistors. Adv. Funct. Mater. 21, 525–531 (2011)

    Article  CAS  Google Scholar 

  9. R. Gayen, K. Sarkar, S. Hussain, R. Bhar, A. Pal, Zno films prepared by modified sol-gel technique. Indian J. Pure Appl. Phys. 49, 470–477 (2011)

    CAS  Google Scholar 

  10. M. Dominguez, F. Flores, J. Martinez, A. Orduña, Effects of low-temperature annealing on electrical properties of thin-film transistors based on Zinc oxide films deposited by ultrasonic spray pyrolysis: impact of annealing time. Thin Solid Films 615, 243–246 (2016)

    Article  CAS  Google Scholar 

  11. J. Lee, B. Park, Characteristics of Al-doped ZnO thin films obtained by ultrasonic spray pyrolysis: effects of Al doping and an annealing treatment. Mater. Sci. Eng. B 106, 242–245 (2004)

    Article  Google Scholar 

  12. S. Benramache, B. Benhaoua, Influence of annealing temperature on structural and optical properties of ZnO: in thin films prepared by ultrasonic spray technique. Superlattice Microst. 52, 1062–1070 (2012)

    Article  CAS  Google Scholar 

  13. M. Dominguez, J. Pau, M. Gómez, J. Luna, P. Rosales, High mobility thin film transistors based on zinc nitride deposited at room temperature. Thin Solid Films 619, 261–264 (2016)

    Article  CAS  Google Scholar 

  14. J. Jun, B. Park, K. Cho, S. Kim, Flexible TFTs based on solution-processed ZnO nanoparticles. Nanotechnology 20, 505201 (2009)

    Article  Google Scholar 

  15. S. Hau, H. Yip, N. Baek, J. Zou, K. O’Malley, A. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 92, 253301 (2008)

    Article  Google Scholar 

  16. S. Lee, Y. Jeong, S. Jeong, J. Lee, M. Jeon, J. Moon, Solution-processed ZnO nanoparticle-based semiconductor oxide thin-film transistors. Superlattice Microst. 44, 761–769 (2008)

    Article  CAS  Google Scholar 

  17. S. Lee, S. Jeong, D. Kim, S. Hwang, M. Jeon, J. Moon, ZnO nanoparticles with controlled shapes and sizes prepared using a simple polyol synthesis. Superlattice Microst. 43, 330–339 (2008)

    Article  CAS  Google Scholar 

  18. F. Vidor, T. Meyers, U. Hilleringmann, Inverter circuits using ZnO nanoparticle based thin-film transistors for flexible electronic applications. Nanomaterials 6, 154 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by VIEP-BUAP [Grant No. DJMA-EXC17-G].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Dominguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dominguez, M.A., Martinez, J., Monfil-Leyva, K. et al. Incorporation of ZnO Nanoparticles on Solution Processed Zinc Oxide Thin-Film Transistors. Trans. Electr. Electron. Mater. 19, 412–416 (2018). https://doi.org/10.1007/s42341-018-0063-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-018-0063-3

Keywords

Navigation