Skip to main content

Advertisement

Log in

Effect of CeMgAl11O19 addition on mechanical and dielectric properties of alumina ceramics for HTCC application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Al2O3–CeMgAl11O19 composites were sintered at 1530 °C for 3 h with the wet nitrogen–hydrogen atmosphere in the tunnel kiln for HTCC application. The effects of the CeMgAl11O19 content on the mechanical and dielectric properties were investigated. The results indicated that the CeMgAl11O19 platelets significantly enhanced the mechanical property and slightly reduced the grain size of Al2O3. The optimum bending strength was 450 MPa with 8 wt% CeMgAl11O19 addition. But further additions would promote the abnormal growth of grains and increase porosity. CeMgAl11O19 exhibited insignificant effects on the dielectric properties of composite ceramics, with all samples having dielectric constants in the range of 9–10 and acceptable dielectric losses. For the composite ceramics with 8 wt% CeMgAl11O19, a strong metal–ceramic combination was obtained with metallization adhesion strength greater than 44.5 N/mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. X. Zhang, N. Chen, J. Wu, J.W. Wei, B. Yan, L. Li, N. He, Rapid fabrication of surface microstructures on AlN HTCC substrate by chemically assisted laser ablation. Ceram. Int. 47(19), 27598–27608 (2021)

    Article  CAS  Google Scholar 

  2. J. Raynaud, V. Pateloup, M. Bernard, D. Gourdonnaud, D. Passerieux, D. Cros, V. Madrangeas, P. Michaud, T. Chartier, Hybridization of additive manufacturing processes to build ceramic/metal parts: example of HTCC. J. Eur. Ceram. Soc. 41(3), 2023–2033 (2021)

    Article  CAS  Google Scholar 

  3. I.J. Induja, M.R. Varma, M.T. Sebastian, Mineral sillimanite-based hard substrates for HTCC applications. J. Electron. Mater. 47(10), 6171–6176 (2018)

    Article  CAS  Google Scholar 

  4. S. Zheng, T. Liang, Y. Hong, Y. Li, J. Xiong, Fabrication and measurement of wireless pressure-sensitive micro-device based on high temperature co-fired ceramics technology. Sensor. Rev. 34(1), 117–122 (2014)

    Article  Google Scholar 

  5. D. Jurków, J. Stiernstedt, M. Dorczyński, G. Wetter, Investigation of high temperature co-fired ceramic tapes lamination conditions. Ceram. Int. 41(6), 7860–7871 (2015)

    Article  Google Scholar 

  6. Z.B. Huang, W.C. Zhou, R.F. Ma, X.F. Tang, F. Luo, J.K. Zhu, Dielectric and mechanical properties of hot-pressed sintered Csf/Al2O3 ceramic composites. Int. J. Appl. Ceram. Technol. 9(2), 413–420 (2012)

    Article  CAS  Google Scholar 

  7. X.F. Liu, H.L. Liu, C.Z. Huang, B. Zhao, L.W. Zheng, High temperature mechanical properties of Al2O3-based ceramic tool material toughened by SiC whiskers and nanoparticles. Ceram. Int. 43(1), 1160–1165 (2017)

    Article  CAS  Google Scholar 

  8. P.L. Chen, I.W. Chen, In-situ alumina/aluminate platelet composites. J. Am. Ceram. Soc. 75(9), 2610–2612 (1992)

    Article  CAS  Google Scholar 

  9. H. Tang, M.H. Fang, C. Tang, Z.H. Huang, H.T. Liu, H.K. Zhu, Y.G. Liu, X.W. Wu, Effect of LaMgAl11O19 addition and temperature on the mechanical properties of Al2O3-based ceramics. Mater. Sci. Eng. A. 655, 160–167 (2016)

    Article  CAS  Google Scholar 

  10. R. Guo, D. Guo, Y. Chen, Z. Yang, Q. Yuan, In situ formation of LaAl11O18 rodlike particles in ZTA ceramics and effect on the mechanical properties. Ceram. Int. 28(7), 699–704 (2002)

    Article  CAS  Google Scholar 

  11. J. Liu, H.Z. Gu, M.J. Zhang, A. Huang, H.M. Li, Improvement in fatigue resistance performance of corundum castables with addition of different size calcium hexaluminate particles. Ceram. Int. 45(1), 225–232 (2019)

    Article  CAS  Google Scholar 

  12. Y.Q. Wu, Y.F. Zhang, X.X. Huang, J.K. Guo, In-situ growth of needlelike LaAl11O18 for reinforcement of alumina composites. Ceram. Int. 27(8), 903–906 (2001)

    Article  CAS  Google Scholar 

  13. F. Kern, Effect of in situ-formed cerium hexaaluminate precipitates on properties of alumina-24 vol % zirconia (1.4Y) composites. J. Ceram. Sci. Technol. 4(4), 177–186 (2013)

    Google Scholar 

  14. N.S. Subaramainian, R. Ramalingam, M. Vijayaraghavan, Preparation and characterization of ceria magnesium aluminate nano powder for thermal barrier application. Iop Conf. Ser. Mater. Sci. Eng. 73, 10–14 (2015)

    Article  Google Scholar 

  15. J.P. Angle, A.T. Nelson, D. Men, M.L. Mecartney, Thermal measurements and computational simulations of three-phase (CeO2–MgAl2O4–CeMgAl11O19) and four-phase (3Y-TZP–Al2O3–MgAl2O4–LaPO4) composites as surrogate inert matrix nuclear fuel. J. Nucl. Mater. 454(1–3), 69–76 (2014)

    Article  CAS  Google Scholar 

  16. T.T. Wu, G.J. Liu, Y.F. Li, Y.Q. Zhang, M.M. Zhang, B. Wu, Effect of La2O3 on the corrosion resistance of alumina ceramic. J. Mater. Res. Technol. 9(3), 6287–6296 (2020)

    Article  CAS  Google Scholar 

  17. A.Z.A. Azhar, H. Mohamad, M.M. Ratnam, Z.A. Ahmad, The effects of MgO addition on microstructure, mechanical properties and wear perormance of zirconia-toughened alumina cutting inserts. J. Alloys Compd. 497(1–2), 316–320 (2010)

    Article  CAS  Google Scholar 

  18. Z. Negahdari, M. Willert-Porada, C. Pfeiffer, Mechanical properties of dense to porous alumina/lanthanum hexaaluminate composite ceramics. Mater. Sci. Eng. A. 527(12), 3005–3009 (2010)

    Article  Google Scholar 

  19. Z. Negahdari, M. Willert-Porada, Tailoring the microstructure of reaction-sintered alumina/lanthanum hexaaluminate particulate composites. J. Eur. Ceram. Soc. 30(6), 1381–1389 (2010)

    Article  CAS  Google Scholar 

  20. Z.D.I. Sktani, N.A. Rejab, Z.A. Ahmad, Tougher and harder zirconia toughened alumina (ZTA) composites through in situ microstructural formation of LaMgAl11O19. Int. J. Refract. Met. H. 79, 60–68 (2019)

    Article  Google Scholar 

  21. Z.D.I. Sktani, A.Z.A. Azhar, M.M. Ratnam, Z.A. Ahmad, The inflfluence of in-situ formation of hibonite on the properties of zirconia toughened alumina (ZTA) composites. Ceram. Int. 40(4), 6211–6217 (2014)

    Article  CAS  Google Scholar 

  22. M.K. Cinibulk, Hexaluminates as a cleavable fiber-matrix interphase: synthesis, texture development, and phase compatibility. J. Eur. Ceram. Soc. 20(5), 569–582 (2000)

    Article  CAS  Google Scholar 

  23. A. Kahn, A.M. Lejus, M. Madsac, J. Théry, D. Vivien, J.C. Bernier, Preparation, structure, optical, and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19). J. Appl. Phys. 52(11), 6864–6869 (1981)

    Article  CAS  Google Scholar 

  24. S. Cimino, R. Nigro, U. Weidmann, R. Holzner, Catalytic combustion of methanol over La, Mn-hexaaluminate catalysts. Fuel Process. Technol. 133, 1–7 (2015)

    Article  CAS  Google Scholar 

  25. M. Tian, X.D. Wang, T. Zhang, Hexaaluminates: A review of the structure, synthesis and catalytic performances. Catal. Sci. Technol. 6(7), 1984–2004 (2016)

    Article  CAS  Google Scholar 

  26. P.V. Bijumon, P. Mohanan, M.T. Sebastian, Microwave dielectric properties of LaMgAl11O19. Mater. Res. Bull. 37(13), 2129–2133 (2002)

    Article  CAS  Google Scholar 

  27. S.S. Cole, G. Sommer, Glass-migration mechanism of ceramic-to-metal seal adherence. J. Am. Ceram. Soc. 44(6), 265–271 (1961)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was Supported by the “Pioneer” R&D Program of Zhejiang Province under 2022C01006.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

XY contributed to data curation, writing original draft, and preparation. HZ and LJ contributed to conceptualization, methodology, and software. HZ and SS contributed to visualization and investigation. JX and JT contributed to supervision and validation. WG contributed to the software. FM contributed to writing reviewing and editing.

Corresponding authors

Correspondence to Jianxi Tong or Fancheng Meng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Zhu, H., Zhou, H. et al. Effect of CeMgAl11O19 addition on mechanical and dielectric properties of alumina ceramics for HTCC application. J Mater Sci: Mater Electron 33, 24761–24768 (2022). https://doi.org/10.1007/s10854-022-09183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09183-9

Navigation