Skip to main content
Log in

Synthesis, characterization and visible light driven dye degradation performance of one-pot synthesized amorphous CoWO4 powder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study illustrates the first ever report on degradation of methylene blue (MB) and rhodamine B (RhB) within visible light using facile one-pot synthesized amorphous cobalt tungstate (a-CoWO4) powder via wet chemical method. Various physico-chemical techniques including X-ray diffraction, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and ultra-violet diffuse reflectance spectroscopy confirmed the successful formation of CoWO4. The a-CoWO4 exhibited spherical morphology with direct band gap of 2.51 eV, as estimated using the Kubelka Munk method. Furthermore, CoWO4 powder used for the photocatalytic degradation of rhodamine B (RhB) and methylene blue (MB) dyes demonstrated excellent performance by degrading 94% RhB and 89% MB dye in 2 hour (h). The a-CoWO4 demonstrates excellent recyclability as well as stability. The superior performance was ascribed to a larger surface area as well as reduced band gap due to the amorphous nature which enabled the response to the visible light. This work highlights the potential of a-CoWO4 powder for visible light active photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files). The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G. He, J. Li, W. Li, B. Li, N. Noor, K. Xu, J. Hu, I. Parkin, One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes. J. Mater. Chem. A 27, 14272–14278 (2015). https://doi.org/10.1039/C5TA01598G

    Article  CAS  Google Scholar 

  2. S. Sagadevan, J. Podder, I. Das, Synthesis and characterization of CoWO4 nanoparticles via chemical precipitation technique. J. Mater. Sci.: Mater. Electron. 27, 9885–9890 (2016). https://doi.org/10.1007/s10854-016-5057-5

    Article  CAS  Google Scholar 

  3. H. Eranjaneya, P. Adarakatti, A. Siddaramanna, C. Thimanna, Nickel tungstate nanoparticles: synthesis, characterization and electrochemical sensing of mercury (II) ions. J. Mater. Sci.: Mater Electron. 30, 3574–3584 (2019). https://doi.org/10.1007/s10854-018-00635-9

    Article  CAS  Google Scholar 

  4. A. Sobhani-Nasab, M. Rahimi-Nasrabadi, H. Naderi, V. Pourmohamadian, F. Ahmadi, M. Anjal, H. Ehrlch, Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities. Ultrason. Sonochem. 45, 185–196 (2018). https://doi.org/10.1016/j.ultsonch.2018.03.011

    Article  CAS  Google Scholar 

  5. P. Samanta, A. Desai, S. Let, S. Ghosh, Advanced porous materials for sensing, capture and detoxification of organic pollutants toward water remediation. ACS Sustain. Chem. Eng. 7, 7456–7478 (2019). https://doi.org/10.1021/acssuschemeng.9b00155

    Article  CAS  Google Scholar 

  6. S. Gupta, H. Nishad, V. Magdum, P. Walke, High-performance supercapacitor electrode and photocatalytic dye degradation of mixed-phase WO3 nanoplates. Mater. Lett. 281, 128639–128643 (2020). https://doi.org/10.1016/j.matlet.2020.128639

    Article  CAS  Google Scholar 

  7. S. Montemayor, A. Fuentes, Electrochemical characteristics of lithium insertion in several 3D metal tungstates (MWO4, M = Mn Co, Ni and Cu) prepared by aqueous reactions. Ceram. Int. 30, 393–400 (2004). https://doi.org/10.1016/s0272-8842(03)00122-6

    Article  CAS  Google Scholar 

  8. S. Mirsadeghi, H. Zandavar, H. Tooski, H. Rajabi, M. Nasrabadi, E. Sohouli, M. Ganjali, S. Pourmortazavi, Study of photocatalytic and electrocatalytic activities of calcium tungstate nanoparticles synthesized via surfactant-supported hydrothermal method. J. Mater. Sci.: Mater Electron. 31, 20255–20269 (2020). https://doi.org/10.1007/s10854-020-04545-7

    Article  CAS  Google Scholar 

  9. A. Li, Y. Tu, Y. Zhu, D. Li, W. Zhou, X. Zhu, L. Feng, CoWO4 nanoparticles prepared in different solvents and their pseudocapacitant performances. Int. J. Electrochem. Sci. 12, 5646–5656 (2017). https://doi.org/10.20964/2017.06.60

    Article  CAS  Google Scholar 

  10. J. Deng, L. Chang, P. Wang, E. Zhang, J. Ma, T. Wang, Preparation and magnetic properties of CoWO4 nanocrystals. Cryst. Res. Technol. 47(2012), 1004–1007 (2012). https://doi.org/10.1002/crat.201200130

    Article  CAS  Google Scholar 

  11. X. Song, E. Yang, R. Ma, H. Chen, Y. Zhao, J. Nanopart. Res. 10, 709–713 (2008). https://doi.org/10.1007/s11051-007-9299-2

    Article  CAS  Google Scholar 

  12. L. Zhen, W. Wang, C. Xu, W. Shao, L. Qin, Mater. Lett. 62, 1740–1742 (2008). https://doi.org/10.1016/j.matlet.2007.09.076

    Article  CAS  Google Scholar 

  13. D. Yaseen, M. Scholz, Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int. J. Environ. Sci. Technol. 16, 1193–1226 (2019). https://doi.org/10.1007/s13762-018-2130-z

    Article  CAS  Google Scholar 

  14. E. Bandiello, P. Rodríguez-Hernández, A. Muñoz, M. Buenestado, C. Popescu, D. Errandonea, Electronic properties and high-pressure behavior of wolframite-type CoWO4. Mater. Adv. 2, 5955–5966 (2021). https://doi.org/10.1039/d1ma00510c

    Article  CAS  Google Scholar 

  15. L. Xu, D. Deng, C. Wang, F. Chen, J. Qian, H. Li, Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater. 177, 70–80 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  Google Scholar 

  16. M. Hassaan, A. Nemr, Health and environmental impacts of dyes: mini review. Am. J. Environ. Sci. 1, 64–67 (2017). https://doi.org/10.11648/j.ajese.20170103.11

    Article  Google Scholar 

  17. S. Luo, R. Wang, J. Yin, T. Jiao, K. Chen, G. Zou, L. Zhang, J. Zhou, L. Zhang, Q. Peng, Preparation and dye degradation performances of self-assembled MXene-Co3O4 nanocomposites synthesized via solvothermal approach. ACS Omega 4, 3946–3953 (2019). https://doi.org/10.1021/acsomega.9b00231

    Article  CAS  Google Scholar 

  18. N. Singh, G. Nagpal, S. Agrawal, Rachna, water purification by using adsorbents: a review. Environ. Technol. Innov. 11, 187–240 (2018). https://doi.org/10.1016/j.eti.2018.05.006

    Article  Google Scholar 

  19. Z. Xie, Y. Peng, L. Yu, C. Xing, M. Qiu, J. Hu, H. Zhang, Solar-inspired water purification based on emerging 2D materials: status and challenges. Sol. RRL. 49, 1900400–1900428 (2020). https://doi.org/10.1002/solr.201900400

    Article  Google Scholar 

  20. N. Gupta, Y. Ghaffari, S. Kim, J. Bae, K. Kim, M. Saifuddin, Photocatalytic degradation of organic pollutants over MFe2O4 (M = C o, Ni, Cu, Zn) nanoparticles at neutral pH. Appl. Surf. Sci. 10, 1–11 (2020). https://doi.org/10.1038/s41598-020-61930-2

    Article  CAS  Google Scholar 

  21. V. Gawade, N. Gavade, H. Shinde, S. Babar, A. Kadam, K. Garadkar, Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. J Mater Sci: Mater Electron. 28, 14033–14039 (2017). https://doi.org/10.1007/s10854-017-7254-2

    Article  CAS  Google Scholar 

  22. T. Bhosale, H. Shinde, N. Gavade, S. Babar, V. Gawade, S. Sabale, R. Kamble, B. Shirke, K. Garadkar, Biosynthesis of SnO2 nanoparticles by aqueous leaf extract of Calotropis gigantea for photocatalytic applications. J. Mater. Sci. Mater. Electron 29, 6826–6834 (2018). https://doi.org/10.1007/s10854-018-8669-0

    Article  CAS  Google Scholar 

  23. H.K. Sadhanala, S. Senapati, K.V. Harika, K.K. Nanda, A. Gedanken, Green synthesis of MoS2 nanoflowers for efficient degradation of methylene blue and crystal violet dyes under natural sun light conditions. New J. Chem. 42, 14318–14324 (2018). https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  24. O. Koysuren, Improving ultraviolet light photocatalytic activity of polyaniline/silicon carbide composites by Fe-doping. J. Appl. Polym. Sci. 3, 48524–48534 (2019). https://doi.org/10.1002/APP.48524

    Article  Google Scholar 

  25. A. Nikam, B. Prasad, A. Kulkarni, Wet Chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm 20, 5091–5107 (2018). https://doi.org/10.1039/C5TA01598G

    Article  CAS  Google Scholar 

  26. S. Gupta, M. More, D. Late, P. Walke, High-rate quasi-solid-state hybrid supercapacitor of hierarchical flowers of hydrated tungsten oxide nanosheets. Electrochim. Acta 366, 137389–137418 (2021). https://doi.org/10.1016/j.electacta.2020.137389

    Article  CAS  Google Scholar 

  27. S. Gupta, H. Nishad, V. Patil, S. Chakane, M. More, D. Late, P. Walke, Morphology and crystal structure dependent pseudocapacitor performance of hydrated WO3 nanostructures. Mater. Adv. 1, 2492–2500 (2020). https://doi.org/10.1039/D0MA00518E

    Article  CAS  Google Scholar 

  28. C.F. Baes, R.E. Mesmer, The hydrolysis of cations (Wiley, Hoboken, 1976)

    Google Scholar 

  29. L. Yang, X. Wu, X. Zhu, C. He, M. Meng, Z. Gan, P. Chu, Amorphous nickel/cobalt tungsten sulfide electrocatalysts for high-efficiency hydrogen evolution reaction. Appl. Surf. Sci. 341, 149–156 (2015). https://doi.org/10.1016/j.jallcom.2020.157829

    Article  CAS  Google Scholar 

  30. F. Alharthi, H. Alanazi, A. Alsyahi, N. Ahmad, Hydrothermal synthesis, characterization and exploration of photocatalytic activities of polyoxometalate:Ni-CoWO4 nanoparticles. Curr. Comput.-Aided Drug Des. 11, 456–470 (2021). https://doi.org/10.3390/cryst11050456

    Article  CAS  Google Scholar 

  31. X. Xing, Y. Gui, G. Zhang, C. Song, CoWO4 nanoparticles prepared by two methods displaying different structures and supercapacitive performances. Electrochim. Acta 157, 15–22 (2015). https://doi.org/10.1016/j.electacta.2015.01.055

    Article  CAS  Google Scholar 

  32. P. Taneja, S. Sharma, A. Umar, S. Kumar Mehta, A. Ibhadon, S. Kansal, Visible-light driven photocatalytic degradation of brilliant green dye based on cobalt tungstate (CoWO4) nanoparticles. Mater. Chem. Phys. 211, 335–342 (2018). https://doi.org/10.1016/j.matchemphys.2018.02.041

    Article  CAS  Google Scholar 

  33. P. Shinde, N. Chodankar, V. Lokhande, A. Patil, T. Ji, J. Kim, C. Lokhande, Fabrication of high performance flexible all solid state asymmetric supercapacitors with a three dimensional disc like WO3/stainless steel electrode. RSC Adv. 114, 113442–113451 (2016). https://doi.org/10.1039/C6RA22181E

    Article  CAS  Google Scholar 

  34. F. Ahmadi, M. Nasrabadi, A. Fosooni, M. Daneshmand, Synthesis and application of CoWO4 nanoparticles for degradation of methyl orange. J Mater Sci: Mater Electron. 27, 9514–9519 (2016). https://doi.org/10.1007/s10854-016-5002-7

    Article  CAS  Google Scholar 

  35. M. Ahmed, A. Adam, A. Khan, A. Rehman, M. Qamaruddin, M. Siddiqui, M. Qamar, Improved photoelectrochemical water oxidation under visible light with mesoporous CoWO4 with mesoporous CoWO4. Mater. Lett. 183, 281–284 (2016). https://doi.org/10.1016/j.matlet.2016.07.137.06.066

    Article  CAS  Google Scholar 

  36. M. Hanafi, N. Sapawe, Effect of initial concentration on the photocatalytic degradation of remazol brilliant blue dye using nickel catalyst. Mater. Today: Proc. 31, 318–320 (2020). https://doi.org/10.1016/j.matpr2020

    Article  CAS  Google Scholar 

  37. M. Mousavi, A. Habibi-Yangjeh, Decoration of Fe3O4 and CoWO4 nanoparticles over graphitic carbon nitride: Novel visible-light-responsive photocatalysts with exceptional photocatalytic performances. Mater. Res. Bull. 105, 159–171 (2018). https://doi.org/10.1016/j.materresbull.2018.04.052

    Article  CAS  Google Scholar 

  38. T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, P. Fornasiero, Synthesis, characterization and photocatalytic performance of transition metal tungstates. Chem. Phys. Lett. 498, 113–119 (2010). https://doi.org/10.1016/j.cplett.2010.08.026

    Article  CAS  Google Scholar 

  39. M. Vosoughifar, Simple route for preparation cobalt tungstate nanoparticles with different amino acids and its photocatalyst application. J. Mater. Sci: Mater. Electron. 28, 8011–8016 (2017). https://doi.org/10.1007/s10854-017-6505-6

    Article  CAS  Google Scholar 

  40. L. Xu, S. Wang, Y. Ni-Ping Liu, X. Wu, X. Wang, Preparation of Cobalt tungstate nanomaterials and study on sonocatalytic degradation of Safranin t. Sep. Purif. Technol. 276, 119405 (2021). https://doi.org/10.1016/j.seppur.2021.119405

    Article  CAS  Google Scholar 

  41. Z. Diao, J. Liu, Y. Hu, L. Kong, D. Jiang, X. Xu, Comparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: reactivity, stability, products and mechanism. Sep. Purif. Technol. 184, 374–383 (2017). https://doi.org/10.1016/j.seppur.2016.05.016

    Article  CAS  Google Scholar 

  42. F. Troncoso, G. Tonetto, Nb2O5 monolith as an efficient and reusable catalyst for textile wastewater treatment. Sustain. Environ. Res. 1, 1–14 (2021). https://doi.org/10.1186/s42834-021-00109-4

    Article  CAS  Google Scholar 

  43. L. Carmine, A. Ancona, K. Cesare, B. Dumontel, N. Garino, G. Canavese, S. Hernandez, V. Cauda, Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl. Catal. B: Environ. 243, 629–640 (2019). https://doi.org/10.1016/j.apctatb.2018.10.078

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the DST-INSPIRE, India, for financial support through research project sanction no. DST/INSPIRE/04/2016/000260. The authors are thankful to the Science and Engineering Board (SERB), Department of Science and Technology, India, New Delhi for financial support through a research project (sanction number TTR/2021/000006 dated 24 March 2021). JLG acknowledges the Science & Engineering Research Board, a statutory body of the Department of Science & Technology (DST), Government of India for awarding the Ramanujan Fellowship (SB/S2/RJN-090/2017).

Funding

This Study was supported by funder name (SERB), Department of Science and Technology, India (Grant No. TTR/2021/000006).

Author information

Authors and Affiliations

Authors

Contributions

PPB: Investigation, Formal analysis, Data curation, Writing—original draft. VVM, DBM: Investigation, writing—review & editing. YMC: Resourses, supervision. JLG: Visualization. UMP: Visualization. CDL: Funding acquisition, supervision. Writing—review & editing.

Corresponding author

Correspondence to C. D. Lokhande.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 325 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagwade, P.P., Magdum, V.V., Malavekar, D.B. et al. Synthesis, characterization and visible light driven dye degradation performance of one-pot synthesized amorphous CoWO4 powder. J Mater Sci: Mater Electron 33, 24646–24662 (2022). https://doi.org/10.1007/s10854-022-09174-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09174-w

Navigation