Skip to main content
Log in

Single-source route to chalcopyrite-type CuFeS2 and CuFeSe2 nanocrystals and their structural and optical studies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Materials such as ternary MIMIIIE2 (where MI = Ag, Cu; MIII = In, Fe; E = S, Se) chalcopyrite-type nanocrystals have garnered interest recently because of their size- and composition-tunable electronic and optical properties. However, controlling the composition of multinary compounds is challenging due to the difference in reactivity of the involved components. Metal–organic precursors usually provide better control over stoichiometry due to preformed bonds. Herein, we have synthesized suitable sulfur-based (dihexyldithiocarbamato) and selenium-based (tetradiphenylimidodiselnodiphosphanate) metal-organic precursors of iron for the preparation of phase pure ternary CuFeS2 and CuFeSe2 nanocrystals, via hot injection route using oleylamine as solvent, decomposition initiator and capping agent. The nanomaterials were characterized by powder-X-ray diffraction (p-XRD), high resolution-transmission electron microscopy (HR-TEM), TEM, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and ultraviolet–visible (UV–Vis) analysis. The effect of temperature on synthesized nanoparticles was also investigated, showing that the size and morphology change from particles to sheet-like structures. The band gap of synthesized nanomaterials also showed variation along with the temperature change. The study shows a facile route for composition and morphologically controlled ternary chalcopyrite nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Sandroni, K.D. Wegner, D. Aldakov, P. Reiss, ACS Energy Lett. 2, 1076–1088 (2017)

    Article  CAS  Google Scholar 

  2. J.J. Frick, R.J. Cava, A.B. Bocarsly, Chem. Mater. 30, 4422–4431 (2018)

    Article  CAS  Google Scholar 

  3. P. Prabukanthan, R. Lakshmi, G. Harichandran, T. Tatarchuk, N. J. Chem. 42, 11642–11652 (2018)

    Article  CAS  Google Scholar 

  4. P. Prabukanthan, R. Dhanasekaran, Mater. Res. Bull. 43, 1996–2004 (2008)

    Article  CAS  Google Scholar 

  5. P. Prabukanthan, R. Dhanasekaran, Cryst. Growth Des. 7, 618–623 (2007)

    Article  CAS  Google Scholar 

  6. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovoltaics Res. Appl. 19, 894–897 (2011)

    Article  CAS  Google Scholar 

  7. B. A. Tappan, W. Chu, M. Mecklenburg, O. V. Prezhdo and R. L. J. A. n. Brutchey, 2021, 15, 13463–13474.

  8. H. Zhao, Y. Zhang, X. Zhang, L. Qian, M. Sun, Y. Yang, Y. Zhang, J. Wang, H. Kim, G. Qiu, Miner. Eng. 136, 140–154 (2019)

    Article  CAS  Google Scholar 

  9. N. Tsujii, T. Mori, Y. Isoda, J. Electron. Mater. 43, 2371–2375 (2014)

    Article  CAS  Google Scholar 

  10. A. Layek, S. Middya, A. Dey, M. Das, J. Datta, C. Banerjee, P.P. Ray, J. Alloys Compd. 613, 364–369 (2014)

    Article  CAS  Google Scholar 

  11. D. Liang, R. Ma, S. Jiao, G. Pang, S. Feng, Nanoscale 4, 6265–6268 (2012)

    Article  CAS  Google Scholar 

  12. T. Barbier, D. Berthebaud, R. Frésard, O.I. Lebedev, E. Guilmeau, V. Eyert, A. Maignan, Inorg. Chem. Front. 4, 424–432 (2017)

    Article  CAS  Google Scholar 

  13. S.O. Long, A.V. Powell, P. Vaqueiro, S. Hull, Chem. Mater. 30, 456–464 (2018)

    Article  CAS  Google Scholar 

  14. M. Singh, M. Miyata, S. Nishino, D. Mott, M. Koyano, S. Maenosono, Nanomaterials 5, 1820–1830 (2015)

    Article  CAS  Google Scholar 

  15. L. Vaure, Y. Liu, D. Cadavid, F. Agnese, D. Aldakov, S. Pouget, A. Cabot, P. Reiss, P. Chenevier, ChemNanoMat 4, 982–991 (2018)

    Article  CAS  Google Scholar 

  16. X. Zhang, H. Zhao, Y. Zhu, Y. Yang, D. Jiang, X. Chen, J. Sun, J. Luo, B. Cai, H. Fan, Regen. Biomater. 4, 223–231 (2017)

    Article  CAS  Google Scholar 

  17. A. Zhang, X. Shen, Z. Zhang, X. Lu, W. Yao, J. Dai, D. Xie, L. Guo, G. Wang, X. Zhou, J. Mater. Chem. C 5, 301–308 (2017)

    Article  CAS  Google Scholar 

  18. A.O. Moghaddam, A. Shokuhfar, A. Cabot, A. Zolriasatein, Powder Technol. 333, 160–166 (2018)

    Article  Google Scholar 

  19. A. Kushwaha, C.-G. Ma, M. Brik, S.B. Omran, R. Khenata, Mater. Chem. Phys. 227, 324–331 (2019)

    Article  CAS  Google Scholar 

  20. Y.-K. Hsu, Y.-G. Lin, Y.-C. Chen, Mater. Res. Bull. 46, 2117–2119 (2011)

    Article  CAS  Google Scholar 

  21. J. Delgado, G.D. De Delgado, M. Quintero, J. Woolley, Mater. Res. Bull. 27, 367–373 (1992)

    Article  CAS  Google Scholar 

  22. N. Hamdadou, M. Morsli, A. Khelil, J. Bernede, J. Phys. D 39, 1042 (2006)

    Article  CAS  Google Scholar 

  23. K.-T. Chen, C.-J. Chiang, D. Ray, Mater. Lett. 98, 270–272 (2013)

    Article  Google Scholar 

  24. W. Ding, X. Wang, H. Peng, L. Hu, Mater. Chem. Phys. 137, 872–876 (2013)

    Article  CAS  Google Scholar 

  25. J. Li, Q. Tan, J.-F. Li, J. Alloys Compd. 551, 143–149 (2013)

    Article  CAS  Google Scholar 

  26. K. Aup-Ngoen, T. Thongtem, S. Thongtem, A. Phuruangrat, Mater. Lett. 101, 9–12 (2013)

    Article  CAS  Google Scholar 

  27. P. Kumar, S. Uma, R. Nagarajan, Chem. Commun. 49, 7316–7318 (2013)

    Article  CAS  Google Scholar 

  28. I.S. Lyubutin, C.-R. Lin, S.S. Starchikov, Y.-J. Siao, M.O. Shaikh, K.O. Funtov, S.-C. Wang, Acta Mater. 61, 3956–3962 (2013)

    Article  CAS  Google Scholar 

  29. N. Wu, Y. Li, M. Zeng, J. Gao, Y. Tang, Z. Zeng, Y. Zheng, J. Solid State Chem. 271, 292–297 (2019)

    Article  CAS  Google Scholar 

  30. W. Wang, J. Jiang, T. Ding, C. Wang, J. Zuo, Q. Yang, A.C.S. Appl, Mater. Interfaces 7, 2235–2241 (2015)

    Article  CAS  Google Scholar 

  31. C. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Article  CAS  Google Scholar 

  32. M.A. Malik, P. O’Brien, N. Revaprasadu, Adv. Mater. 11, 1441–1444 (1999)

    Article  CAS  Google Scholar 

  33. S.N. Malik, S. Mahboob, N. Haider, M.A. Malik, P. O’Brien, Nanoscale 3, 5132–5139 (2011)

    Article  CAS  Google Scholar 

  34. M.D. Khan, M. Aamir, M. Sohail, S. Bhoyate, M. Hyatt, R.K. Gupta, M. Sher, N. Revaprasadu, Dalton Trans. 48, 3714–3722 (2019)

    Article  CAS  Google Scholar 

  35. M.D. Khan, G. Murtaza, N. Revaprasadu, P. O’Brien, Dalton Trans. 47, 8870–8873 (2018)

    Article  CAS  Google Scholar 

  36. M.D. Khan, M.A. Malik, N. Revaprasadu, Coord. Chem. Rev. 388, 24–47 (2019)

    Article  CAS  Google Scholar 

  37. J.A. Adekoya, M.D. Khan, N. Revaprasadu, RSC Adv. 9, 35706–35716 (2019)

    Article  CAS  Google Scholar 

  38. M.D. Khan, S.U. Awan, C. Zequine, C. Zhang, R.K. Gupta, N. Revaprasadu, ACS Applied Energy Materials 3, 1448–1460 (2020)

    Article  CAS  Google Scholar 

  39. G.E. Ayom, M.D. Khan, T. Ingsel, W. Lin, R.K. Gupta, S.J. Zamisa, W.E. van Zyl, N. Revaprasadu, Chem. Eur. J. 26, 2693–2704 (2020)

    Article  CAS  Google Scholar 

  40. M. Akhtar, J. Akhter, M.A. Malik, P. O’Brien, F. Tuna, J. Raftery, M. Helliwell, J. Mater. Chem. 21, 9737–9745 (2011)

    Article  CAS  Google Scholar 

  41. M. Akhtar, M.A. Malik, J. Raftery, P. O’Brien, J. Mater. Chem. A 2, 20612–20620 (2014)

    Article  CAS  Google Scholar 

  42. M. Akhtar, A. L. Abdelhady, M. A. Malik and P. J. J. o. c. g. O'Brien, 2012, 346, 106–112.

  43. S. Khalid, E. Ahmed, Y. Khan, S. Nawaz, M. Ramzan, N. Khalid and W. Ahmed, in Micro and Nanomanufacturing Volume II, Springer, 2018, pp. 281–318.

  44. K. Mokurala, P. Bhargava, S. J. M. C. Mallick and Physics, 2014, 147, 371–374.

  45. S. Paul, Nachr. Ges. Wiss. Göttingen 26, 98–100 (1918)

    Google Scholar 

  46. J.I. Langford, A. Wilson, J. Appl. Crystallogr. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  47. V. Uvarov, I. Popov, Mater. Charact. 85, 111–123 (2013)

    Article  CAS  Google Scholar 

  48. Y.-H.A. Wang, N. Bao, A. Gupta, Solid State Sci. 12, 387–390 (2010)

    Article  CAS  Google Scholar 

  49. S. Lee, S. Ghosh, C. E. Hoyer, H. Liu, X. Li and V. C. J. C. o. M. Holmberg, 2021, 33, 1821–1831.

  50. E.J. Silvester, T.W. Healy, F. Grieser, B.A. Sexton, Langmuir 7, 19–22 (1991)

    Article  CAS  Google Scholar 

  51. M.D. Khan, J. Akhtar, M.A. Malik, M. Akhtar, N. Revaprasadu, N. J. Chem. 39, 9569–9574 (2015)

    Article  CAS  Google Scholar 

  52. P. Lee, M. Ou, Z. Zhong, J. Luo, M. Wu, K. Chen, Y. Chen, Chin. J. Phys. 51, 166–173 (2013)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RA performed experimental work in the laboratory, while MA assisted in the characterization of samples and helped in interpreting results. JA conceived the research plan and drafted manuscript writing with MDK, and MAM, NR, and MHB monitored over-all the project while giving intellectual input and assisted in completing the project by providing characterization facilities.

Corresponding author

Correspondence to Javeed Akhtar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, R., Akhtar, J., Akhtar, M. et al. Single-source route to chalcopyrite-type CuFeS2 and CuFeSe2 nanocrystals and their structural and optical studies. J Mater Sci: Mater Electron 33, 24619–24630 (2022). https://doi.org/10.1007/s10854-022-09172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09172-y

Navigation