Skip to main content

Advertisement

Log in

Preparation and hydrogen detection performance of 3D self-assembled Pd nanoflowers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Safety is extremely important in hydrogen energy applications due to combustion taking place very quickly when hydrogen and air are mixed at a rate of about 4% in the ambient. For the detection of hydrogen, hydrogen sensors with high sensitivity and fast response times need to be developed. In sensor technologies, palladium (Pd)-based materials are in-depth research as they detect hydrogen with high sensitivity and short response time at room temperature. The nanoflower morphology increases the sensing surface significantly, thus affecting the sensitivity. Therefore, in this study, a novel process for the preparation of a 3D self-assembled Pd nanoflower-based sensor was reported, and the hydrogen detection performance of the sensor was investigated. From the XRD spectrum, (1 1 1), (2 0 0), and (2 2 0) diffraction peaks correspond to the FCC crystal structure of Pd nanoflowers. Sensor measurements reveal that the sensitivity and the limit of detection (LOD) of the sensor were 10 and 100 ppm at room temperature, respectively. The response time of the sensor was to be 90 s and the recovery time was 120 s at 4000 ppm. Measurements reveal that the prepared Pd nanoflower-based sensor has high sensitivity and a short response time against hydrogen at room temperature. The sensor can be used for the detection of hydrogen leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. Raw data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. T. Hübert, L. Boon-Brett, G. Black, U. Banach, Sens. Actuat. B Chem. 157, 329 (2011)

    Article  Google Scholar 

  2. T. Hübert, L. Boon-Brett, W. Buttner, Sensors for safety and process control in hydrogen technologies (CRC Press, 2018)

    Book  Google Scholar 

  3. W. Buttner, R. Burgess, M. Post, C. Rivkin, Summary and findings from the NREL/DOE Hydrogen Sensor Workshop (8 June 2011); National Renewable Energy Lab (NREL): Golden, CO, USA, 2011. http://www.osti.gov/servlets/purl/1048994/. Accessed 15 Jan 2022

  4. W.J. Buttner, M.B. Post, R. Burgess, C. Rivkin, Int. J. Hydrogen Energy 36, 2462–2470 (2011)

    Article  CAS  Google Scholar 

  5. R.M. Penner, Acc. Chem. Res. 50, 1902 (2017)

    Article  CAS  Google Scholar 

  6. F. Yang, K.C. Donavan, S.C. Kung, R.M. Penner, Nano Lett. 12, 2924 (2012)

    Article  CAS  Google Scholar 

  7. Y. Deng, Semiconducting metal oxides for gas sensing (Springer, 2019)

    Book  Google Scholar 

  8. F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Science 293, 2227 (2001)

    Article  CAS  Google Scholar 

  9. K. Kim, M. Kim, S.M. Cho, Mater. Chem. Phys. 96, 278 (2006)

    Article  CAS  Google Scholar 

  10. G. Kartopu, S. Habouti, M. Es-Souni, Mater. Chem. Phys. 107, 226 (2008)

    Article  CAS  Google Scholar 

  11. F. Cheng, H. Wang, Z. Sun, M. Ning, Z. Cai, M. Zhang, Electrochem. Commun. 10, 798 (2008)

    Article  CAS  Google Scholar 

  12. S. Cherevko, N. Kulyk, J. Fu, C.H. Chung, Sens. Actuators, B Chem. 136, 388 (2009)

    Article  CAS  Google Scholar 

  13. L. Tang, G. Yu, Y. Ouyang, W. Si, B. Weng, Electrochim. Acta 53, 3305 (2008)

    Article  CAS  Google Scholar 

  14. E. Yue, G. Yu, Y. Ouyang, B. Weng, W. Si, L. Ye, J. Mater. Sci. Technol. 24, 850–856 (2008)

    CAS  Google Scholar 

  15. X.L. Fei, S.L. Tang, R.L. Wang, H.L. Su, Y.W. Du, Solid State Commun. 141, 25 (2007)

    Article  CAS  Google Scholar 

  16. V.M. Prida, V. Vega, V. Franco, J.L. Sanchez Llamazares, M.J. Pérez, J.D. Santos, L.I. Escoda, J.J. Suñol, B. Hernando, J. Magn. Magn. Mater. 321, 790 (2009)

    Article  CAS  Google Scholar 

  17. H. Hu, C. Yang, J. Chen, G. Wu, J. Magn. Magn. Mater. 320, 2305 (2008)

    Article  CAS  Google Scholar 

  18. B. Wang, L. Sun, M. Schneider-Ramelow, K.-D. Lang, H.-D. Ngo, Micromachines 12, 1429 (2021)

    Article  Google Scholar 

  19. A. Abbasi Moud, Colloid Interface Sci Commun 47, 100595 (2022)

    Article  CAS  Google Scholar 

  20. Y. Iida, K. Okumura, T. Toyoguchi, T. Murayama, M. Honda, Saf. Health Work 13, S138 (2022)

    Article  Google Scholar 

  21. U. Holzwarth, N. Gibson, Nature Nanotechnol 6, 534 (2011)

    Article  CAS  Google Scholar 

  22. M.E. Franke, T.J. Koplin, U. Simon, Small 2, 36 (2006)

    Article  CAS  Google Scholar 

  23. J. Li, R. Fan, H. Hu, C. Yao, Mater. Lett. 212, 211 (2018)

    Article  CAS  Google Scholar 

  24. S. Dekura, H. Kobayashi, K. Kusada, H. Kitagawa, ChemPhysChem 20, 1158 (2019)

    Article  CAS  Google Scholar 

  25. N.J.J. Johnson, B. Lam, B.P. MacLeod, R.S. Sherbo, M. Moreno-Gonzalez, D.K. Fork, C.P. Berlinguette, Nat Mater 18(5), 454 (2019)

    Article  CAS  Google Scholar 

  26. Y. Nanba, T. Tsutsumi, T. Ishimoto, M. Koyama, J. Phys. Chem. C 19, 48 (2017)

    Google Scholar 

  27. D. van Dao, T.T.D. Nguyen, D.S. Kim, J.W. Yoon, Y.T. Yu, I.H. Lee, J. Ind. Eng. Chem. 95, 325 (2021)

    Article  CAS  Google Scholar 

  28. J. Jaiswal, P. Tiwari, P. Singh, R. Chandra, Sens. Actuat B Chem. 325, 128800 (2020)

    Article  CAS  Google Scholar 

  29. T.T.D. Nguyen, D. van Dao, I.H. Lee, Y.T. Yu, S.Y. Oh, J. Alloy. Compd. 854, 157280 (2021)

    Article  CAS  Google Scholar 

  30. X. Meng, M. Bi, Q. Xiao, W. Gao, Int. J. Hydrogen Energy 47, 3157 (2022)

    Article  CAS  Google Scholar 

  31. X. Meng, M. Bi, Q. Xiao, W. Gao, Sens. Actuat. B Chem. 359, 131612 (2022)

    Article  CAS  Google Scholar 

  32. Z. Cai, S. Park, J. Alloy. Compd. 907, 164459 (2022)

    Article  CAS  Google Scholar 

  33. N.G. Wright, A.B. Horsfall, J. Phys. D Appl. Phys. 40, 6345 (2007)

    Article  CAS  Google Scholar 

  34. M. Barlow, S. Ahmed, A.M. Francis, H.A. Mantooth, IEEE Trans. Power Electron. 34, 11191 (2019)

    Article  Google Scholar 

  35. J.L. Hudgins, J. Electron. Mater 32(6), 471 (2003)

    Article  CAS  Google Scholar 

  36. C. Wilson, I.D. Williams, S. Kemp, Bus. Strateg. Environ. 20, 310 (2011)

    Article  Google Scholar 

  37. S. Kroehnert, A. Lan, O. Yang, F. Hanesch, M.-K. Hamjah -Fau, E.-N. Jörg, F.-F. Erlangen, N. Gerd, A. Hoffmann -Leibniz, and L. Overmeyer -Leibniz, (n.d.).

  38. J. Wang, J. Chen, Z. Zhang, P. Zhang, Z. Yu, S. Zhang, Soldering Surface Mount Technol. 34, 124 (2022)

    Article  Google Scholar 

  39. Q. Wang, S. Zhang, T. Lin, P. Zhang, P. He, K.-W. Paik, Progress Natural Sci Mater. Int. 31, 129 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by TUBITAK (Grant number 216M421).

Author information

Authors and Affiliations

Authors

Contributions

NT: Conceptualization, Methodology, Writing—Reviewing and Editing, SK: Conceptualization, Methodology, Writing—Original draft preparation, Software. CT: Conceptualization, Methodology.

Corresponding authors

Correspondence to Nevin Taşaltın or Selcan Karakuş.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşaltın, N., Karakuş, S. & Taşaltın, C. Preparation and hydrogen detection performance of 3D self-assembled Pd nanoflowers. J Mater Sci: Mater Electron 33, 24550–24558 (2022). https://doi.org/10.1007/s10854-022-09166-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09166-w

Navigation