Skip to main content
Log in

Electrical relaxation and conduction behaviour in SmFeO3 modified PbZrTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(0.12)SmFeO3–(0.88)Pb(Zr0.45Ti0.55)O3 solid solution has been synthesized by solid state reaction route. The dielectric constant's temperature dependency validates the diffuse phase transition in the studied sample. Electrical properties as a function of frequency (1 kHz–1 MHz) and temperature (573–723 K) have been investigated using impedance graphs. The presence of bulk and grain boundary contributions in overall impedance is revealed by the nature of Nyquist plots. Non-localized conduction is visible in the normalized plots of impedance (Z″) and modulus (M″) spectra. Jonscher’s Power law governs ac conductivity, while Arrhenius dependence governs dc conductivity. Exponent n’s behaviour shows that the conduction mechanism is a tiny polaron hopping process. The activation energies of 0.63 eV, 1.10 eV, and 0.81 eV were calculated using the impedance, modulus, and conductivity data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [Randeep Kaur], upon reasonable request.

References

  1. H. Schmid, Ferroelectrics. Bull. Mater. Sci. 17, 1411–1414 (1994). https://doi.org/10.1007/BF02747238

    Article  CAS  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442759, 759–765 (2006). https://doi.org/10.1038/nature05023

    Article  CAS  Google Scholar 

  3. Na. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000). https://doi.org/10.1021/jp000114x

    Article  CAS  Google Scholar 

  4. L. Bruno, A. Poggialini, G. Felice, Design and calibration of a piezoelectric actuator for interferometric applications. Opt. Lasers Eng. 45, 1148–1156 (2007). https://doi.org/10.1016/j.optlaseng.2007.06.004

    Article  Google Scholar 

  5. K. Prabakar, S.P.M. Rao, Complex impedance spectroscopy studies on fatigued soft and hard PZT ceramics. J. Alloys Compd. 437, 302–310 (2007). https://doi.org/10.1016/j.jallcom.2006.07.108

    Article  CAS  Google Scholar 

  6. E. Boucher, B. Guiffard, L. Lebrun, D. Guyomar, Effects of Zr/Ti ratio on structural, dielectric and piezoelectric properties of Mn- and (Mn, F)-doped lead zirconate titanate ceramics. Ceram. Int. 32, 479–485 (2006). https://doi.org/10.1016/j.ceramint.2005.03.028

    Article  CAS  Google Scholar 

  7. G.H. Haertling, C.E. Land, Hot-pressed (Pb, La)(Zr, Ti)O3, ferroelectric ceramics for electrooptic applications. J. Am. Ceram. Soc. 54, 1–10 (1971). https://doi.org/10.1111/j.1151-2916.1970.tb12105.x-i1

    Article  CAS  Google Scholar 

  8. S.B. Majumder, Y.N. Mohapatra, D.C. Agrawal, Fatigue resistance in lead zirconate titanate thin ferroelectric films: effect of cerium doping and frequency dependence. Appl. Phys. Lett. 70, 138–140 (1997). https://doi.org/10.1063/1.119287

    Article  CAS  Google Scholar 

  9. S.B. Majumder, B. Roy, R.S. Katiyar, S.B. Krupanidhi, Effect of acceptor and donor dopants on polarization components of lead zirconate titanate thin films. Appl. Phys. Lett. 79, 239–241 (2001). https://doi.org/10.1063/1.1383057

    Article  CAS  Google Scholar 

  10. B.A. Boukamp, M.T.N. Pham, D.H.A. Blank, H.J.M. Bouwmeester, Ionic and electronic conductivity in lead-zirconate-titanate (PZT). Solid State Ion. 170, 239–254 (2004). https://doi.org/10.1016/j.ssi.2004.03.005

    Article  CAS  Google Scholar 

  11. S.R. Shannigrahi, F.E.H. Tay, K. Yao, R.N.P. Choudhary, Effect of rare earth ( La, Nd, Sm, Eu, Gd, Dy, Er and Yb ) ion substitutions on the microstructural and electrical properties of sol-gel grown PZT ceramics. J. Eur. Ceram. Soc. 24, 163–170 (2004). https://doi.org/10.1016/S0955-2219(03)00316-9

    Article  CAS  Google Scholar 

  12. J.E. Garcia, V. Gomis, R. Perez, A. Albareda, J.A. Eiras, Unexpected dielectric response in lead zirconate titanate ceramics: the role of ferroelectric domain wall pinning effects. Appl. Phys. Lett. 91, 3–6 (2007). https://doi.org/10.1063/1.2759983

    Article  CAS  Google Scholar 

  13. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971)

    Google Scholar 

  14. S.R. Shannigrahi, H.N. Acharya, R.N.P. Choudhary, Structural and dielectric properties of Nd modified Pb(Zr0.60Ti0.40)O3 ceramics. Mater. Sci. Eng. B. 56, 31–39 (1999). https://doi.org/10.1016/S0921-5107(99)00002-1

    Article  Google Scholar 

  15. S. Dutta, R.N.P. Choudhary, P.K. Sinha, Ferroelectric phase transition in Bi-doped PLZT ceramics. Mater. Sci. Eng. B 98, 74–80 (2003). https://doi.org/10.1016/S0921-5107(02)00612-8

    Article  CAS  Google Scholar 

  16. R. Ranjan, R. Kumar, B. Behera, R.N.P. Choudhary, Effect of Sm on structural, dielectric and conductivity properties of PZT ceramics. Mater. Chem. Phys. 115, 473–477 (2009). https://doi.org/10.1016/j.matchemphys.2009.01.017

    Article  CAS  Google Scholar 

  17. R. Ranjan, R. Kumar, B. Behera, R.N.P. Choudhary, Structural and impedance spectroscopic studies of samarium modified lead zirconate titanate ceramics. Physica B 404, 3709–3716 (2009). https://doi.org/10.1016/j.physb.2009.06.113

    Article  CAS  Google Scholar 

  18. M. Prabu, I.B. Shameem Banu, S. Gobalakrishnan, M. Chavali, Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol-gel method. J. Alloys Compd. 551, 200–207 (2013). https://doi.org/10.1016/j.jallcom.2012.09.095

    Article  CAS  Google Scholar 

  19. K. Ramam, M. Lopez, Dielectric, ferroelectric and piezoelectric studies of neodymium-modified PLZNT ceramics for sensor and actuator applications. J. Alloys Compd. 466, 398–403 (2008). https://doi.org/10.1016/j.jallcom.2007.11.055

    Article  CAS  Google Scholar 

  20. R. Kaur, A. Kaur, V. Sharma, L. Singh, M. Singh, A. Singh, An investigation on structural and magnetically induced ferroelectricity in (1–x)Pb(Zr0.45Ti0.55)O3-(x)SmFeO3 solid solutions. J. Alloys Compd. 710, 850–857 (2017). https://doi.org/10.1016/j.jallcom.2017.03.271

    Article  CAS  Google Scholar 

  21. S. Dutta, R.N.P. Choudhary, P.K. Sinha, Impedance spectroscopy studies on Fe3+ ion modified PLZT ceramics. Ceram. Int. 33, 13–20 (2007). https://doi.org/10.1016/j.ceramint.2005.07.010

    Article  CAS  Google Scholar 

  22. S. Sen, R.N.P. Choudhary, A. Tarafdar, P. Pramanik, Impedance spectroscopy study of strontium modified lead zirconate titanate ceramics. J. Appl. Phys. 99, 124114 (2006). https://doi.org/10.1063/1.2206850

    Article  CAS  Google Scholar 

  23. A. Saeed, B. Ruthramurthy, T.K. Ban, O.B. Hoong, W.H. Yong, L.K. Pah, Y.H. Kwang, Structural and magnetic properties of iron doped barium strontium titanate ceramic synthesised using slow injection sol–gel technique. Mater. Technol. 30, 140–143 (2015). https://doi.org/10.1080/10667857.2015.1112586

    Article  CAS  Google Scholar 

  24. A. Chandran, K.C. George, Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods. J. Nanopart. Res. 16, 2238–2255 (2014). https://doi.org/10.1007/s11051-013-2238-5

    Article  CAS  Google Scholar 

  25. M.D. Rahaman, M.D. Mia, M.N.I. Khan, A.K.M. Akther Hossain, Study the effect of sintering temperature on structural, microstructural and electromagnetic properties of 10% Ca-doped Mn0.6Zn0.4Fe2O4. J. Magn. Magn. Mater. 404, 238–249 (2016). https://doi.org/10.1016/j.jmmm.2015.12.029

    Article  CAS  Google Scholar 

  26. Ch. Rayssi, SEl. Kossia, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 8, 17139–17150 (2018). https://doi.org/10.1039/C8RA00794B

    Article  CAS  Google Scholar 

  27. J.D. Bobic, M.M. Vijatovic Petrovic, J. Banys, B.D. Stojanovic, Electrical properties of niobium doped barium bismuth-titanate ceramics. Mater. Res. Bull. 47, 1874–1880 (2012). https://doi.org/10.1016/j.materresbull.2012.04.069

    Article  CAS  Google Scholar 

  28. S. Singh, O.P. Thakur, C. Prakash, Dielectric and piezoelectric properties of microwave processed Sm substituted PCT ceramics. J. Phys. D: Appl. Phys. 38, 1621–1628 (2005). https://doi.org/10.1088/0022-3727/38/10/018

    Article  CAS  Google Scholar 

  29. G.S. Fulcher, Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355 (1925). https://doi.org/10.1111/j.1151-2916.1925.tb16731.x

    Article  CAS  Google Scholar 

  30. H. Vogel, The law of the relation between the viscosity of liquids and the temperature. Phys. Z. 22, 645–646 (1921)

    CAS  Google Scholar 

  31. S. Dutta, R.N.P. Choudhary, P.K. Sinha, A.K. Thakur, Microstructural studies of (PbLa)(ZrTi)O3 ceramics using complex impedance spectroscopy. J. Appl. Phys. 96, 1607–1613 (2004). https://doi.org/10.1063/1.1765869

    Article  CAS  Google Scholar 

  32. S. Mohanty, R.N.P. Choudhary, R. Padhee, B.N. Parida, Dielectric and impedance spectroscopy of BiFeO3eNaTaO3 multiferroics. Ceram. Int. 40, 9017–9025 (2014). https://doi.org/10.1007/s11664-014-3198-y

    Article  CAS  Google Scholar 

  33. A. Pelaiz-Barranco, J.D.S. Guerra, O. García-Zaldívar, F. Calderon-Pi~nar, M.E. Mendoza, D.A. Hall, E.B. Araújo, Phase transition and dielectric properties of La-doped Pb(Zr, Ti)O3 antiferroelectric ceramics. Solid State Commun. 149, 1308–1311 (2009). https://doi.org/10.1016/j.ssc.2009.05.004

    Article  CAS  Google Scholar 

  34. A. Singh, R. Chatterjee, S.K. Mishra, P.S.R. Krishna, S.L. Chaplot, Origin of large dielectric constant in La modified BiFeO 3 -PbTiO 3 multiferroic. J. Appl. Phys. 111, 14113 (2013). https://doi.org/10.1063/1.3675279

    Article  CAS  Google Scholar 

  35. K. Kumari, A. Prasad, K. Prasad, Dielectric, impedance/modulus and conductivity studies lead-free ceramics. Am. J. Mater. Sci. 6, 1–18 (2016). https://doi.org/10.5923/j.materials.20160601.01

    Article  CAS  Google Scholar 

  36. A.A. Kumar, A. Kumar, J.K. Quamara, G.R. Dillip, W. Joo, Fe(III) induced structural, optical, and dielectric behavior of cetyltrimethyl ammonium bromide stabilized strontium stannate nanoparticles synthesized by a facile wet chemistry route. RSC Adv. 5, 17202–17209 (2015). https://doi.org/10.1039/C4RA16775A

    Article  CAS  Google Scholar 

  37. R.A. Mondal, B.S. Murty, V.R.K. Murthy, Maxwell—wagner polarization in grain boundary segregated NiCuZn ferrite. Curr. Appl. Phys. 14, 1727–1733 (2014). https://doi.org/10.1016/j.cap.2014.10.005

    Article  Google Scholar 

  38. U. Dash, S. Sahoo, P. Chaudhuri, S.K.S. Parashar, K. Parashar, Electrical properties of bulk and nano Li2TiO3 ceramics: a comparative study. J. Adv. Ceram. 3, 89–97 (2014). https://doi.org/10.1007/s40145-014-0094-0

    Article  CAS  Google Scholar 

  39. B. Tiwari, R.N.P. Choudhary, Study of impedance parameters of cerium modified lead zirconate titanate ceramics. IEEE Trans. Dielectr. Electr. Insul. 17, 5–17 (2010). https://doi.org/10.1109/TDEI.2010.5411996

    Article  CAS  Google Scholar 

  40. H. Singh, A. Kumar, K.L. Yadav, Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3-BaTiO3 ceramics. Mater. Sci. Eng. B. 176, 540–547 (2011). https://doi.org/10.1016/j.mseb.2011.01.010

    Article  CAS  Google Scholar 

  41. T. Badapanda, S. Sarangi, B. Behera, S. Anwar, Structural and impedance spectroscopy study of samarium modified barium zirconium titanate ceramic prepared by mechanochemical route. Curr. Appl. Phys. 14, 1192–1200 (2014). https://doi.org/10.1016/j.cap.2014.06.007

    Article  Google Scholar 

  42. Y.-M. Li, R.-H. Liao, X.-P. Jiang, Y.-P. Zhang, Impedance spectroscopy and dielectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 ceramics. J. Alloys Compd. 484, 961–965 (2009). https://doi.org/10.1016/j.jallcom.2009.05.087

    Article  CAS  Google Scholar 

  43. J. Liu, D. Chun-Gang, Y. Wei-Guo, W.N. Mei, R.W. Smith, J.R. Hardy, Large dielectric constant and maxwell-wagner relaxation in Bi2/3Cu3Ti4O12. Phys. Rev. B 70, 144106-1–144107 (2004). https://doi.org/10.1103/PhysRevB.70.144106

    Article  CAS  Google Scholar 

  44. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Nature 5, 13645-1–13711 (2015). https://doi.org/10.1038/srep13645

    Article  CAS  Google Scholar 

  45. S. Sen, R.N.P. Choudhary, A. Tarafdar, P. Pramanik, Impedance spectroscopy study of strontium modified lead zirconate titanate ceramics. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2206850

    Article  Google Scholar 

  46. L. Essaleh, G. Marín, S.M. Wasim, S. Lahlali, H. Chehouani, Analysis of complex impedance of p-CuIn3Se5 by impedance spectroscopy. J. Alloys Compd. 688, 210–215 (2016). https://doi.org/10.1016/j.jallcom.2016.07.183

    Article  CAS  Google Scholar 

  47. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci. Rep. 5, 13645 (2015). https://doi.org/10.1038/srep13645

    Article  CAS  Google Scholar 

  48. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Impedance spectroscopy and scaling behaviors of Sr3Co2Fe24O41 hexaferrite. Appl. Phys. Lett. 106, 022902 (2015). https://doi.org/10.1063/1.4905596

    Article  CAS  Google Scholar 

  49. A. Shukla, R.N.P. Choudhary, High-temperature impedance and modulus spectroscopy characterization of La3+/Mn4+ modified PbTiO3 nanoceramics. Phys. B: Condens. Matter 406, 2492–2500 (2011). https://doi.org/10.1016/j.physb.2011.03.030

    Article  CAS  Google Scholar 

  50. A.K. Behera, N.K. Mohanty, S.K. Satpathy, B. Behera, P. Nayak, Effect of rare earth doping on impedance, modulus and conductivity properties of multiferroic composites: 0.5(BiLaxFe1−xO3)–0.5(PbTiO3). Acta Metall. Sin. (Engl. Lett.) 28, 847–857 (2015). https://doi.org/10.1007/s40195-015-0268-y

    Article  CAS  Google Scholar 

  51. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mater. Res. 19, 1–8 (2016). https://doi.org/10.1142/S0219720012030011

    Article  CAS  Google Scholar 

  52. A.K. Behera, N.K. Mohanty, S.K. Satpathy, B. Behera, P. Nayak, Investigation of complex impedance and modulus properties of Nd doped 0.5BiFeO3–0.5PbTiO3 multiferroic Composites. Cent. Eur. J. Phys. 12, 851–861 (2014). https://doi.org/10.2478/s11534-014-0523-2

    Article  CAS  Google Scholar 

  53. R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, N. Ahlawat, Rietveld refinement, impedance spectroscopy and magnetic properties of Bi0.8Sr0.2FeO3 substituted Na0.5Bi0.5TiO3 ceramics. J. Magn. Magn. Mater. 414, 1–9 (2016). https://doi.org/10.1016/j.jmmm.2016.04.020

    Article  CAS  Google Scholar 

  54. R. Gerhardt, Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. J. Phys. Chem. Solids 55, 1491–1506 (1994). https://doi.org/10.1016/0022-3697(94)90575-4

    Article  CAS  Google Scholar 

  55. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)

    Google Scholar 

  56. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, A new ferroelectric oxide Li2Pb2Pr2W2Ti4Nb4O30: synthesis and characterization. J. Phys. Chem. Solids 73, 713–719 (2012). https://doi.org/10.1016/j.jpcs.2012.01.013

    Article  CAS  Google Scholar 

  57. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Impedance spectroscopy of multiferroic PbZrxTi1−xO3/CoFe2O4 layered thin films. Phys. Rev. B 77, 014111–014210 (2008). https://doi.org/10.1103/PhysRevB.77.014111

    Article  CAS  Google Scholar 

  58. D.P. Almond, Anomalous conductivity prefactors in fast ion conductors. Nature 306, 456–457 (1983). https://doi.org/10.1038/306456a0

    Article  CAS  Google Scholar 

  59. D.P. Almond, G.K. Duncan, A.R. West, the determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ion. 8, 159–164 (1983). https://doi.org/10.1016/0167-2738(83)90079-6

    Article  CAS  Google Scholar 

  60. S.R. Elliott, A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–218 (1987). https://doi.org/10.1080/00018738700101971

    Article  CAS  Google Scholar 

  61. R. Punia, R.S. Kundu, M. Dult, S. Murugavel, N. Kishore, Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system. J. Appl. Phys. 112, 083701–083705 (2012). https://doi.org/10.1063/1.4759356

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Randeep Kaur, one of the authors, would like to express her gratitude to the Indian government's Department of Science and Technology for granting her the INSPIRE fellowship (IF130873). I'd want to express my gratitude to my supervisor, Dr. Anupinder Singh. The authors are also grateful for the study resources provided by Guru Nanak Dev University’s Emerging Life Sciences Department in Amritsar.

Funding

This work was supported by the Indian government’s Department of Science and Technology for granting the INSPIRE fellowship (IF130873).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, analysis and the first draft of the manuscript were performed by RK. Funding acquisition, resources, and supervision were performed by RK and Final manuscript was approved by AK and AS, all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Randeep Kaur.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Research involving human and human participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Kaur, A. & Singh, A. Electrical relaxation and conduction behaviour in SmFeO3 modified PbZrTiO3 ceramics. J Mater Sci: Mater Electron 33, 24295–24307 (2022). https://doi.org/10.1007/s10854-022-09150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09150-4

Navigation