Skip to main content
Log in

Investigation of structural, optical, and dielectric properties of Zn1-xCrxS nanoparticles for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We investigated the structure, optical, and dielectric properties of undoped and chromium-doped zinc sulfide (Zn1-xCrxS) nanoparticles prepared via co-precipitation at 300 K with Cr concentrations x = 0.00, 0.02, and 0.04. The X-ray diffraction patterns demonstrated that the Zn1-xCrxS nanoparticles have a cubic structure with no impurity. The average crystallite size of the nanoparticles calculated using the Scherrer equation is in the range of 1.70–1.56 nm and decreases with an increase in Cr content. The lattice constants were in the range of 5.38–5.35 Å. Field emission scanning electron microscope (FESEM) images of nanoparticles show nearly spherical morphology with agglomeration, and doping reduces agglomeration. Energy-dispersive spectroscopy (EDS) analysis confirmed the presence of Cr in doped samples. The optical band gap of undoped ZnS nanoparticles was found to be 3.35 eV, increasing slightly from 3.39 to 3.41 eV as the chromium concentration increased. Dielectric measurements show that the dielectric constant of doped samples is higher at low frequencies, whereas the dielectric losses of these samples are lower at higher frequencies. Furthermore, the AC conductivity of all samples varies with frequency and composition, increasing abruptly at higher frequencies and decreasing with the addition of Cr ion in the ZnS matrix. Optical and dielectric results indicate that Cr-doped ZnS nanoparticles are promising materials for optoelectronic and high-frequency devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P. Caregnato, K.R. Espinosa Jiménez, P.I. Villabrille, Catal Today 372, 183–190 (2020)

    Article  Google Scholar 

  2. A. Phuruangrat, S. Siri, P. Wadbua et al., J. Phys. Chem. Solids 126, 170–177 (2019)

    Article  CAS  Google Scholar 

  3. K. Ou, S. Wang, G. Wan, M. Huang, Y. Zhang, L. Bai, L. Yi, J. Alloys Compd. 726, 707–711 (2017)

    Article  CAS  Google Scholar 

  4. H. Hu, W. Zhang, Opt. Mater. 28, 536–550 (2006)

    Article  CAS  Google Scholar 

  5. S. Ghorai, N. Patra, A. Pal, D. Bhattacharyya, S.N. Jha, B. Ray, S. Chatterjee, A.K. Ghosh, J. Alloys Compd. 805, 363–378 (2019)

    Article  CAS  Google Scholar 

  6. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, J. Vac. Sci. Technol. B 22, 932–948 (2004)

    Article  CAS  Google Scholar 

  7. N. Kumbhojkar, V.V. Nikesh, A. Kshirsagar, S. Mahamuni, J. Appl. Phys. 88, 6260–6264 (2000)

    Article  CAS  Google Scholar 

  8. A. Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Appl. Phys. A 105, 119–124 (2011)

    Article  CAS  Google Scholar 

  9. N.V. Desai, I.A. Shaikh, K.G. Rawal, D.V. Shah, AIP Conf. Proc. 1953, 030149 (2018)

    Article  Google Scholar 

  10. Z. Zhang, J. Li, J. Jian, R. Wu, Y. Sun, S. Wang, Y. Ren, J. Li, J. Cryst. Growth 372, 39–42 (2013)

    Article  CAS  Google Scholar 

  11. A. Azmand, H. Kafashan, J. Alloys Compd. 779, 301–313 (2019)

    Article  CAS  Google Scholar 

  12. S.J. Basha, V. Khidhirbrahmendra, J. Madhavi, U.S.U. Thampy, C.V. Reddy, R.V.S.S.N. Ravikumar, Adv. Mater. Devices 4, 260–266 (2019)

    Article  Google Scholar 

  13. J. Ghrayeb, T.W. Jackson, R. Daniels, D.G. Hopper, Proc. SPIE 3057, 237 (1997)

    Article  Google Scholar 

  14. O.A. Korotchenkov, A. Cantarero, A.P. Shpak, Y.A. Kunitskii, A.I. Senkevich, M.O. Borovoy, A.B. Nadtochii, Nanotechnology 16, 2033 (2005)

    Article  CAS  Google Scholar 

  15. A.Z. Obidin, A.N. Pechenov, Y.M. Popov, V.A. Frolov, Y.V. Korostelin, P.V. Shapkin, Sov. J. Quantum Electron. 18, 1100 (1988)

    Article  Google Scholar 

  16. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, Prog. Mater Sci. 56, 175–287 (2011)

    Article  CAS  Google Scholar 

  17. Y. Jiang, W.J. Zhang, J.S. Jie, X.M. Meng, J.A. Zapien, S.T. Lee, Adv. Mater. 18, 1527–1532 (2006)

    Article  CAS  Google Scholar 

  18. M. Narayanan, S. Kumarasamy, M. Ranganathan, S. Kandasamy, G. Kandasamy, K. Gnanavel, K. Mamtha, Mater. Today (2020). https://doi.org/10.1016/j.matpr.2020.05.725

    Article  Google Scholar 

  19. L.J. Zhuge, X.M. Wu, Z.F. Wu, X.M. Chen, Y.D. Meng, Scr. Mater. 60, 214 (2009)

    Article  CAS  Google Scholar 

  20. L. Schneider, S.V. Zaitsev, W. Jin, A. Kompch, M. Winterer, M. Acet, G. Bacher, Nanotechnology 20, 135604 (2009)

    Article  CAS  Google Scholar 

  21. A. Iqbal, A. Mahmood, T.M. Khan, E. Ahmed, Progr. Nat. Sci. 23(1), 64–69 (2013)

    Article  Google Scholar 

  22. N.A. Vlasenko, P.F. Oleksenko, M.A. Mukhlyo, Z.L. Denisova, L.I. Veligura, Ann. Phys. 525(12), 889–905 (2013)

    Article  CAS  Google Scholar 

  23. M. Nematollahi, X. Yang, U.J. Gibson, T.W. Reenaas, Thin Solid Films 590, 28–32 (2015)

    Article  CAS  Google Scholar 

  24. A. AL-Osta, A. Alnehia, A.A. Qaid, H.T. Al-hsab, A. Al-Sharabi, Optik 214, 164831 (2020)

    Article  CAS  Google Scholar 

  25. C.M.S. Vall, M. Chaik, A. Tchenka, S. Hnawi, A. Mellalou, A.E. Kissani, M. Aggour, A. Outzourhit, Physica E 130, 114694 (2021)

    Article  Google Scholar 

  26. D.A. Reddy, A. Divya, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Physica B 406, 1944–1949 (2011)

    Article  Google Scholar 

  27. P.S. Prabhu, P. Kathirvel, H.B. Ramalingam, Mater. Today 5, 16466–16471 (2018)

    CAS  Google Scholar 

  28. M. Aqeel, M. Ikram, A. Asghar, A. Haider, A. Ul-Hamid, M. Naz, M. Imran, S. Ali, Appl. Nanosci. 10, 2045–2055 (2020)

    Article  CAS  Google Scholar 

  29. V.J. Kumar, R. Thangaraj, S. Sharma, R.C. Singh, Appl. Surf. Sci. 416, 296–301 (2017)

    Article  Google Scholar 

  30. O. Gurbuz, M. Okutan, Appl. Surf. Sci. 387, 1211–1218 (2016)

    Article  CAS  Google Scholar 

  31. A. Selmi, A. Fkiri, J. Bouslimi et al., J. Mater. Sci. 31, 18664–18672 (2020)

    Google Scholar 

  32. R. Khan, C.I.L. de Araujo, T. Khan, S.A. Khattak, E. Ahmed, A. Khan et al., J. Mater. Sci. 30, 3396–3404 (2019)

    CAS  Google Scholar 

  33. G.N. Mathur, Prog. Cryst. Growth Charact. Mater. 45, 167–169 (2002)

    Article  CAS  Google Scholar 

  34. S.K. Mandal, S. Chaudhuri, A.K. Pal, Thin Solid Films 209, 230 (1999)

    Google Scholar 

  35. R. Thielsch, T. Böhme, H. Böttcher, Phys. Status Solidi A 155, 157–170 (1996)

    Article  CAS  Google Scholar 

  36. T. Ming, C. Weiping, Z. Lide, Appl. Phys. Lett. 71, 3697 (1997)

    Article  Google Scholar 

  37. S. Elsi, S. Mohanapriya, K. Pushpanathan, J. Supercond. Novel Magn. 33, 3223–3240 (2020)

    Article  CAS  Google Scholar 

  38. K. Bera, S. Saha, P.S. Jana, Mater. Today 5, 6321–6328 (2018)

    CAS  Google Scholar 

  39. B. Poornaprakash, K.N. Kumar, U. Chalapathi, M. Reddeppa, P.T. Poojitha, S.-H. Park, J. Mater. Sci. 27(6), 6474–6479 (2016)

    CAS  Google Scholar 

  40. P. Kaur, S. Kumar, A. Singh, C.L. Chain, C.L. Dong, T.S. Chan, K.P. Lee, C. Srivastava, S.M. Rao, M.K. Wu, Superlattices Microstruct. 84, 785–795 (2015)

    Article  Google Scholar 

  41. K. Ichino, Y. Morimoto, H. Kobayashi, Phys. Stat. Sol. 779(4), 776–779 (2006)

    Google Scholar 

  42. D. Anbuselvan, S. Muthukumaran, Opt. Mater. 42, 124–131 (2015)

    Article  CAS  Google Scholar 

  43. C. Mrabet, O. Amount, A. Boukhachem, M. Amlouk, T. Manoubi, J. Alloys Compd. 648, 826–837 (2015)

    Article  CAS  Google Scholar 

  44. J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, L. Vayssieres, Nanotechnology 17, 4995 (2006)

    Article  CAS  Google Scholar 

  45. S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A. Naqvi, Mater. Sci. Eng. B 177, 428–435 (2012)

    Article  CAS  Google Scholar 

  46. J. Maxwell, Oxford Univ. Press 1, 328 (1873)

    Google Scholar 

  47. K.W. Wanger, Ann. Phys. (Leipzig) 40, 817 (1913)

    Google Scholar 

  48. C.-W. Wu, Y. Nan, Y. Lin, Y. Deng, Phys. Rev. Lett. 89, 217601 (2002)

    Article  Google Scholar 

  49. A.H. Virpal, S. Sharma, R.C. Singh, Appl. Surf. Sci. 372, 57–62 (2016)

    Article  CAS  Google Scholar 

  50. S. Suresh, C. Arunseshan, Appl. Nanosci. 4(2), 179–184 (2014)

    Article  CAS  Google Scholar 

  51. R. Zamiri, A. Kaushal, A. Rebelo, J.M.F. Ferreira, Ceram. Int. 40(1), 1635–1639 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

I have declared that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by VVJ. The first draft of the manuscript was written by VVJ. BSM commented on previous versions of the manuscript. Authors read and approved the final manuscript.

Corresponding authors

Correspondence to V. V. Jadhavar or B. S. Munde.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Disclosure of potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhavar, V.V., Munde, B.S. Investigation of structural, optical, and dielectric properties of Zn1-xCrxS nanoparticles for optoelectronic applications. J Mater Sci: Mater Electron 33, 23867–23877 (2022). https://doi.org/10.1007/s10854-022-09145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09145-1

Navigation