Skip to main content
Log in

Electrical properties and aging characteristic of Sb/Ga co-doped single-cation oxide SnO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A system of negative temperature coefficient (NTC) thermistors with adjustable room-temperature resistivity (ρ25) and temperature sensitivity should have great application prospect for various requirements. Herein, Sb/Ga co-doped SnO2 ceramics with nominal formula of Sn0.95−xSb0.05GaxO2 (x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05) were fabricated by conventional solid-state reaction process. The phase component, electrical conductivity, temperature sensitivity of resistivity and aging characteristic were investigated. Analysis of X-ray diffraction shows that the prepared SnO2-based ceramics consist of tetragonal phase. The ceramics exhibit typical characteristic of NTC of resistivity. With change of Ga-ion content, the ceramics possess adjustable ρ25 from 3.24 Ω·cm to 0.54 MΩ·cm together with related NTC material constants (B25/85 values) from 140 to 5384 K. The analysis of complex impedance spectra reveals that both band conduction and hopping conduction are responsible for electrical properties of the prepared ceramics. The aging treatment induced at 150 °C revealed that all ceramics exhibit good electrical stability. The possible aging models were investigated by analysis of the change of element valences before and after aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Chen, W. Kong, J. Yao, B. Gao, Q. Zhang, H. Bu, A. Chang, C. Jiang, Effect of sintering temperature on microstructure and electrical properties of Mn1.2Co1.5Ni0.3O4 ceramic materials using nanoparticles by reverse microemulsion method. J. Mater. Sci. Mater. Electron. 27, 1713–1718 (2015)

    Article  Google Scholar 

  2. C. Ma, H. Gao, TEM and electrical properties characterizations of Co0.98Mn2.02O4 NTC ceramic. J. Alloys Compd. 749, 853–858 (2018)

    Article  CAS  Google Scholar 

  3. R. Jadhav, D. Kulkarni, V. Puri, Structural and electrical properties of fritless Ni(1–x)CuxMn2O4 (0 ≤ x ≤ 1) thick film NTC ceramic. J. Mater. Sci. Mater. Electron. 21, 503–508 (2009)

    Article  Google Scholar 

  4. J. Wang, J. Zhang, Structural and electrical properties of NiMgxMn2−xO4 NTC thermistors prepared by using sol–gel derived powders. Mater. Sci. Eng. B 176, 616–619 (2011)

    Article  CAS  Google Scholar 

  5. P. Luo, B. Zhang, Q. Zhao, D. He, A. Chang, Characterization and electrical conductivity of La1−xSrxCrO3 NTC ceramics. J. Mater. Sci. Mater. Electron. 28, 9265–9271 (2017)

    Article  CAS  Google Scholar 

  6. F. Guan, Z. Dang, X. Chen, S. Huang, J. Wang, X. Cheng, Y. Wu, Novel electrical properties of Mn-doped LaCrO3 ceramics as NTC thermistors. J. Alloys Compd. 871, 159269 (2021)

    Article  CAS  Google Scholar 

  7. Y. Luo, X. Liu, G. Chen, Electrical properties of BaTiO3-based NTC thermistors doped by BaBiO3 and CeO2. J. Alloys Compd. 429, 335–337 (2007)

    Article  CAS  Google Scholar 

  8. J. Qu, S. Li, F. Liu, X. Liu, Z. Chen, C. Yuan, X. Liu, Y. Zhao, D. Zhou, Effect of phase structures and substrate temperatures on NTC characteristics of Cu-modified Ba–Bi–O-based perovskite-type thermistor thin films. Mater. Sci. Semicond. Process. 121, 105375 (2021)

    Article  CAS  Google Scholar 

  9. W. Yan, H. Zhang, X. Wang, C. You, Z. Li, Characterization of electrical conductivity and temperature sensitivity of Cr/Sb-modified SnO2 ceramics. J. Mater. Sci. Mater. Electron. 31, 4040–4049 (2020)

    Article  CAS  Google Scholar 

  10. Z. Yang, H. Zhang, Z. He, B. Li, Z. Li, Influence of B3+- and Na+-ions on electrical property and temperature sensitivity of NiO-based ceramics. J. Mater. Sci. Mater. Electron. 30, 3088–3097 (2019)

    Article  CAS  Google Scholar 

  11. C. You, Z. Li, S. Zhang, G. Jiang, H. Zhang, Electrical properties of Sr-modified CuO ceramics. J. Mater. Sci. Mater. Electron. 32, 15907–15916 (2021)

    Article  CAS  Google Scholar 

  12. P. Li, H. Zhang, C. Gao, G. Jiang, Z. Li, Electrical property of Al/La/Cu modified ZnO-based negative temperature coefficient (NTC) ceramics with high ageing stability. J. Mater. Sci. Mater. Electron. 30, 19598–19608 (2019)

    Article  CAS  Google Scholar 

  13. B. Li, Z. Li, D. Peng, L. Huang, S. Zhang, H. Zhang, Sb-doped ZnO ceramics: NTC thermistors with high temperature sensitivity and electrical stability. J. Mater. Sci. Mater. Electron. 32, 24296–24307 (2021)

    Article  CAS  Google Scholar 

  14. X. Sun, S. Leng, H. Zhang, Z. He, Z. Li, Electrical properties and temperature sensitivity of Li/Mg modified Ni0.7Zn0.3O based ceramics. J. Alloys Compd. 763, 975–982 (2018)

    Article  CAS  Google Scholar 

  15. W.A. Groen, C. Metzmacher, V. Zaspalis, P. Huppertz, S. Schuurman, Aging of NTC ceramics in the system Mn–Ni–Fe–O. J. Eur. Ceram. Soc. 21, 1793–1796 (2001)

    Article  CAS  Google Scholar 

  16. H. Li, I.P.L. Thayil, X. Ma, X. Sang, H. Zhang, A. Chang, Electrical properties and aging behavior of Na-doped Mn1.95Co0.21Ni0.84O4 NTC ceramics. Ceram. Int. 46, 24365–24370 (2020)

    Article  CAS  Google Scholar 

  17. W. Ren, N. Zhu, L. Li, H. Feng, Y. Wang, Y. Yang, Z. Yang, S. Shang, Improvement of ageing issue in Zn0.4Fe2.1Co2Mn1.5O8 thermistor films. J. Eur. Ceram. Soc. 39, 4189–4193 (2019)

    Article  CAS  Google Scholar 

  18. C. Gao, Z. Li, L. Yang, D. Peng, H. Zhang, Investigation of electrical and aging properties of Bi-modified (Zn0.4Ni0.6)1−xNaxO ceramic thermistors. J. Eur. Ceram. Soc. 41, 4160–4166 (2021)

    Article  CAS  Google Scholar 

  19. M.M. Vakiv, O.I. Shpotyuk, V.O. Balitska, B. Butkiewicz, L.I. Shpotyuk, Ageing behavior of electrical resistance in manganite NTC ceramics. J. Eur. Ceram. Soc. 24, 1243–1246 (2004)

    Article  CAS  Google Scholar 

  20. D. Fang, C. Zheng, C. Chen, A.J.A. Winnubst, Aging of nickel manganite NTC ceramics. J. Electroceram. 22, 421–427 (2008)

    Article  Google Scholar 

  21. G. Jiang, Z. Li, C. You, W. Hao, Z. Ma, H. Zhang, Temperature sensitivity and electrical stability of Sb/Mn co-doped SnO2 ceramics. J. Mater. Sci. Mater. Electron. 32, 16945–16955 (2021)

    Article  CAS  Google Scholar 

  22. J. Zhang, H. Zhang, B. Yang, Y. Zhang, Z. Li, Temperature sensitivity of Fe-substituted SnO2-based ceramics as negative temperature coefficient thermistors. J. Mater. Sci. Mater. Electron. 27, 4935–4942 (2016)

    Article  CAS  Google Scholar 

  23. T.S. Zhang, L.B. Kong, X.C. Song, Z.H. Du, W.Q. Xu, S. Li, Densification behaviour and sintering mechanisms of Cu- or Co-doped SnO2: a comparative study. Acta Mater. 62, 81–88 (2014)

    Article  CAS  Google Scholar 

  24. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32, 751–767 (1976)

    Article  Google Scholar 

  25. S. Gong, Z. Chen, F. Tang, P. Pi, X. Wen, Preparation and characterization of antimony doped tin oxide nanoparticles. J. Chin. Ceram. Soc. 37, 648–652 (2009)

    CAS  Google Scholar 

  26. Z. Wang, Z. Li, Y. Zhang, R. Zhang, P. Qin, C. Chen, L. Winnubst, Preparation and electrical properties of Ni0.6Mn2.4−xSnxO4 NTC ceramics. Ceram. Int. 40, 4875–4878 (2014)

    Article  CAS  Google Scholar 

  27. B.Y. Price, G. Hardal, Preparation and characterization of Ni–Co–Zn–Mn–O negative temperature coefficient thermistors with B2O3 addition. J. Mater. Sci. Mater. Electron. 30, 17432–17439 (2019)

    Article  Google Scholar 

  28. R. Kaur, V. Sharma, M. Kumar, M. Singh, A. Singh, Conductivity relaxation in Pb0.9Sm0.10Zr0.405Ti0.495Fe0.10O3 solid solution. J. Alloys Compd. 735, 1472–1479 (2018)

    Article  CAS  Google Scholar 

  29. M.A.L. Nobre, S. Lanfredi, Dielectric spectroscopy on Bi3Zn2Sb3O14 ceramic: an approach based on the complex impedance. J. Phys. Chem. Solids 64, 2457–2464 (2003)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the research funds from the National Natural Science Foundation of China (No. 51767021), Fundamental Research Funds for the Central Universities of Central South University (No. 2022ZZTS0532), Foundation of the Department of Science and Technology of Guizhou Province (No. CG[2021]110), and Development Funds of Hunan Wedid Materials Technology Co., Ltd., China (No. 738010241).

Author information

Authors and Affiliations

Authors

Contributions

ZL, HZ, and SZ contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SZ, SL, YW, and HW. The first draft of the manuscript was written by SZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhicheng Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, H., Leng, S. et al. Electrical properties and aging characteristic of Sb/Ga co-doped single-cation oxide SnO2. J Mater Sci: Mater Electron 33, 23821–23833 (2022). https://doi.org/10.1007/s10854-022-09140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09140-6

Navigation