Skip to main content
Log in

Growth of magnetic graphene films with higher electromagnetic interference shielding at moderate annealing temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ultrathin, highly conductive, and free-standing graphene films have been seen as promising electromagnetic interference (EMI) shielding materials for portable electronic devices. However, they are still expensive. In this paper, a magnetic graphene film decorated with Fe3O4 nanoparticles was prepared through in situ wet chemical synthesis followed by catalytic graphitization. A graphitic structure was obtained at a moderate annealing temperature (1000 °C), after introducing Fe3O4 nanoparticles. This temperature is much lower than the conventional graphitization temperature, which reduces the synthesis costs of graphene film. In addition, Fe3O4 also behaved as microwave absorbers, enhancing the EMI shielding performances. The resulting ultrathin film (~ 50 μm) provided a high EMI shielding effectiveness (SE) of ~ 52.76 dB in the X-band (8.2-12.4 GHz). This is found to be higher than that of bare graphene films (~ 33.45 dB) prepared under the same temperature and sufficient to screen about 99.999% of microwave radiation. Furthermore, absorption was the dominant shielding mechanism for the prepared film owing to the contribution of Fe3O4 nanoparticles that reduced the electromagnetic pollution resulting from secondary reflections. The catalytic graphitization strategy could provide a low-cost approach for fabricating efficient graphene-based EMI shielding materials for portable electronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Bhattacharjee, I. Arief, S. Bose, J. Mater. Chem. C 5, 7390–7403 (2017)

    Article  CAS  Google Scholar 

  2. A.K. Singh, A. Shishkin, T. Koppel, N. Gupta, Compos. Part B. 149, 188–197 (2018)

    Article  CAS  Google Scholar 

  3. C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, Z. Guo, Carbon 140, 696–733 (2018)

    Article  CAS  Google Scholar 

  4. J. Yin, J. Zhang, S. Zhang, C. Liu, X. Yu, L. Chen, Y. Song, S. Han, M. Xi, C. Zhang, N. Li, Z. Wang, Chem. Eng. J. 421, 129763 (2021)

    Article  CAS  Google Scholar 

  5. S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K.K. Pasha, Compos. Part A. 114, 49–71 (2018)

    Article  CAS  Google Scholar 

  6. Y. Wang, W. Wang, R. Xu, M. Zhu, D. Yu, Chem. Eng. J. 360, 817–828 (2019)

    Article  CAS  Google Scholar 

  7. Q.W. Wei, S.F. Pei, X.T. Qian, H.P. Liu, Z.B. Liu, W.M. Zhang, T.Y. Zhou, Z.C. Zhang, X.F. Zhang, H.M. Cheng, W.C. Ren, Adv. Mater. 32, 1907411 (2020)

    Article  CAS  Google Scholar 

  8. Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Small 14, 1800534 (2018)

    Article  Google Scholar 

  9. X. Fan, G. Zhang, J. Li, Z. Shang, H. Zhang, Q. Gao, J. Qin, X. Shi, Compos. Part A. 121, 64–73 (2019)

    Article  CAS  Google Scholar 

  10. Y. Zhan, M. Oliviero, J. Wang, A. Sorrentino, G.G. Buonocore, L. Sorrentino, M. Lavorgna, H. Xia, S. Iannace, Nanoscale 11, 1011–1020 (2019)

    Article  CAS  Google Scholar 

  11. B. Shen, Y. Li, W. Zhai, W. Zheng, A.C.S. Appl, Mater. Interfaces. 8, 8050–8057 (2016)

    Article  CAS  Google Scholar 

  12. Y.Y. Wang, W.J. Sun, D.X. Yan, K. Dai, Z.M. Li, Carbon 176, 118–125 (2021)

    Article  CAS  Google Scholar 

  13. A.A. Khodiri, M.Y. Al-Ashry, A.G. El-Shamy, J. Alloys. Compd. 847, 156430 (2020)

    Article  CAS  Google Scholar 

  14. S. Ganguly, S. Ghosh, P. Das, T.K. Das, S.K. Ghosh, N.C. Das, Polym. Bull. 77, 2923–2943 (2020)

    Article  CAS  Google Scholar 

  15. B. Shen, W. Zhai, W. Zheng, Adv. Func. Mater. 24, 4542–4548 (2014)

    Article  CAS  Google Scholar 

  16. S. Lin, S. Ju, J. Zhang, G. Shi, Y. He, D. Jiang, RSC Adv. 9, 1419–1427 (2019)

    Article  CAS  Google Scholar 

  17. Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Carbon 122, 74–81 (2017)

    Article  CAS  Google Scholar 

  18. M.S. Cao, X.X. Wang, W.Q. Cao, J. Yuan, J. Mater. Chem. C. 3, 6589–6599 (2015)

    Article  CAS  Google Scholar 

  19. S. Lin, S. Ju, G. Shi, J. Zhang, Y. He, D. Jiang, J. Mater. Sci. 54, 7165–7179 (2019)

    Article  CAS  Google Scholar 

  20. Z. Wang, B. Mao, Q. Wang, J. Yu, J. Dai, R. Song, Z. Pu, D. He, Z. Wu, S. Mu, Small 14, 1704332 (2018)

    Article  Google Scholar 

  21. H.J. Chen, J.X. Yang, Q. Shuai, J. Li, Q. Ouyang, S. Zhang, Compos. Sci. Technol. 200, 108455 (2020)

    Article  CAS  Google Scholar 

  22. Y. Liu, Q. Liu, J. Gu, D. Kang, F. Zhou, W. Zhang, Y. Wu, D. Zhang, Carbon 64, 132–140 (2013)

    Article  CAS  Google Scholar 

  23. H.B. Ouyang, Q.Q. Gong, C.Y. Li, J.F. Huang, Z.W. Xu, Mater. Lett. 235, 111–115 (2019)

    Article  CAS  Google Scholar 

  24. M. Bayat, H. Yang, F. Ko, Ploymer. 52, 1645–1653 (2011)

    Article  CAS  Google Scholar 

  25. T. Zhang, D. Huang, Y. Yang, F. Kang, J. Gu, Polymer 53, 6000–6007 (2012)

    Article  CAS  Google Scholar 

  26. B. Mordina, R. Kumar, R.K. Tiwari, D.K. Setua, A. Sharma, J. Phys. Chem. C. 121, 7810–7820 (2017)

    Article  Google Scholar 

  27. T. Zhang, D.Q. Huang, Y. Yang, F.Y. Kang, J.L. Gu, Mater. Sci. Eng. B 178, 1–9 (2013)

    Article  CAS  Google Scholar 

  28. J. Liang, Y. Xu, D. Sui, L. Zhang, Y. Huang, Y. Ma, F. Li, Y. Chen, J. Phys. Chem. C. 114, 17465–17471 (2010)

    Article  CAS  Google Scholar 

  29. Y. Liu, Y. Zhan, Y. Ying, X. Peng, New. J. Chem. 40, 2649–2654 (2016)

    Article  CAS  Google Scholar 

  30. S. Majumder, M. Sardar, B. Satpati, S. Kumar, S. Banerjee, J. Phys. Chem. C. 122, 21356–21365 (2018)

    Article  CAS  Google Scholar 

  31. A.A. Khodiri, M.Y. Al-Ashry, A.G. El-Shamy, J. Alloy. Compd. 847, 156430 (2020)

    Article  CAS  Google Scholar 

  32. J. Sun, P. Zan, X. Yang, L. Ye, L. Zhao, Electrochim. Acta. 215, 483–491 (2016)

    Article  CAS  Google Scholar 

  33. Y. Zhan, J. Wang, K. Zhang, Y. Li, Y. Meng, N. Yan, W. Wei, F. Peng, H. Xia, Chem. Eng. J. 344, 184–193 (2018)

    Article  CAS  Google Scholar 

  34. X.H. Li, X. Li, K.N. Liao, P. Min, T. Liu, A. Dasari, Z.Z. Yu, A.C.S. Appl, Mater. Interfaces. 8, 33230–33239 (2016)

    Article  CAS  Google Scholar 

  35. X. Yin, H. Li, L. Han, J. Meng, J. Lu, L. Zhang, W. Li, Q. Fu, K. Li, Q. Song, Chem. Eng. J. 387, 124025 (2020)

    Article  CAS  Google Scholar 

  36. T. Kuang, L. Chang, F. Chen, Y. Sheng, D. Fu, X. Peng, Carbon 105, 305–313 (2016)

    Article  CAS  Google Scholar 

  37. H.Y. Choi, T.W. Lee, S.E. Lee, J. Lim, Y.G. Jeong, Compos. Sci. Technol. 150, 45–53 (2017)

    Article  CAS  Google Scholar 

  38. J. Xi, Y. Li, E. Zhou, Y. Liu, W. Gao, Y. Guo, J. Ying, Z. Chen, G. Chen, C. Gao, Carbon 135, 44–51 (2018)

    Article  CAS  Google Scholar 

  39. G. Han, Z. Ma, B. Zhou, C. He, B. Wang, Y. Feng, J. Ma, L. Sun, C. Liu, J. Colloid Interf. Sci. 583, 571–578 (2021)

    Article  CAS  Google Scholar 

  40. L.C. Jia, W.J. Sun, C.G. Zhou, D.X. Yan, Q.C. Zhang, Z.M. Li, J. Mater. Chem. C. 6, 9166–9174 (2018)

    Article  CAS  Google Scholar 

  41. W.L. Song, L.Z. Fan, M.S. Cao, M.M. Lu, C.Y. Wang, J. Wang, T.T. Chen, Y. Li, Z.L. Hou, J. Liu, Y.P. Sun, J. Mater. Chem. C. 2, 5057–5064 (2014)

    Article  CAS  Google Scholar 

  42. L.J. Xu, W.Q. Zhang, L.D. Wang, J. Xue, S.F. Hou, RSC Adv. 11, 33302–33308 (2021)

    Article  CAS  Google Scholar 

  43. J. Kang, D. Kim, Y. Kim, J.B. Choi, B.H. Hong, S.W. Kim, 2D Mater. 4, 025003 (2017)

    Article  Google Scholar 

  44. W. Liu, T. Yao, K. Jia, J. Gu, D. Wang, X. Wei, J. Mater. Sci. Mater. Electron. 32, 4393–4403 (2021)

    Article  CAS  Google Scholar 

  45. S. Zeng, X. Li, M. Li, J. Zheng, E. Shiju, W. Yang, B. Zhao, X. Guo, R. Zhang, Carbon 155, 34–43 (2019)

    Article  CAS  Google Scholar 

  46. X.T. Yang, S.G. Fan, Y. Li, Y.Q. Guo, Y.G. Li, K.P. Ruan, S.M. Zhang, J.L. Zhang, J. Kong, J.W. Gu, Compos. Part A. 128, 105670 (2020)

    Article  CAS  Google Scholar 

  47. W.L. Song, X.T. Guan, L.Z. Fan, W.Q. Cao, C.Y. Wang, Q.L. Zhao, M.S. Cao, J. Mater. Chem. A. 3, 2097–2107 (2015)

    Article  CAS  Google Scholar 

  48. L. Wang, H. Qiu, C. Liang, P. Song, Y. Han, Y. Han, J. Gu, J. Kong, D. Pan, Z. Guo, Carbon 141, 506–514 (2019)

    Article  CAS  Google Scholar 

  49. A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandra, S.K. Dhawan, J. Mater. Chem. A. 2, 3581–3593 (2014)

    Article  CAS  Google Scholar 

  50. A.V. Menon, B. Choudhury, G. Madras, S. Bose, Chem. Eng. J. 382, 122816 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Science Foundation of Shanxi Province (201901D211576 and 202103021223453) and General Projects of Natural Science Research of Shanxi Province (202103021224448).

Funding

Youth Science Foundation of Shanxi Province, 201901D211576, Wei Liu, 202103021223453, Kun Jia, General Projects of Natural Science Research of Shanxi Province, 202103021224448, Wei Liu.

Author information

Authors and Affiliations

Authors

Contributions

WL did methodology, investigation, formal analysis, data curation, writing—original draft, and funding acquisition. KJ was involved om validation, formal analysis, and funding acquisition. DW performed formal analysis, writing—review and editing. XW contributed to conceptualization, methodology, writing—review & editing. PW done writing—review and editing. KZ performed resources and writing—review and editing.

Corresponding author

Correspondence to Xuehong Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1553 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Jia, K., Wang, D. et al. Growth of magnetic graphene films with higher electromagnetic interference shielding at moderate annealing temperatures. J Mater Sci: Mater Electron 33, 23781–23791 (2022). https://doi.org/10.1007/s10854-022-09136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09136-2

Navigation