Skip to main content

Advertisement

Log in

Multiferroic and optical characteristics of Mg2(Fe0.85Ni0.15)NbO6 for possible energy storage application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Alkaline earth-based double perovskite composites are novel perovskite compounds that have been the recent topic of interest for many material physicists. Since not much work has been reported in this particular field of study; hence, we took up the task of analyzing the multifunctional and multiferroic properties of Mg2(Fe0.85Ni0.15)NbO6. The frequency-dependent dielectric, impedance, and tangent loss characterizations were performed to infer the capacitive and semiconducting properties of the sample. The magnetic study revealed the weak ferromagnetic characteristics of the composite, particularly induced by structural distortions. The nonzero P−E hysteresis loop at room temperature indicates the ferroelectric polarizations present in the compound. The optical band gap was estimated by extrapolating the Tauc plot of ultraviolet−visible spectroscopy covering the UV to the visible range of the electromagnetic spectra. The conductivity analysis was performed following the frequency-dependent ac conductivity which showed very good high-frequency ac conductivity of the ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Research data is not available in the manuscript and it will be available on the request.

References

  1. K. Leng, Q. Tang, Y. Wei, Li. Yang, Y. Xie, Wu. Zhiwei, X. Zhu, AIP Adv. 10, 120701 (2020). https://doi.org/10.1063/5.0031196

    Article  CAS  Google Scholar 

  2. Q. Tang, X. Zhu, Nanomaterials 12, 224 (2022). https://doi.org/10.3390/nano12020244

    Article  CAS  Google Scholar 

  3. P. Kayser, M.J. Martínez-Lope, J.A. Alonso, M. Retuerto, M. Croft, A. Ignatov, M.T. Fernández-Díaz, Eur J Inorg Chem. (2014). https://doi.org/10.1002/ejic.201301080

    Article  Google Scholar 

  4. D.D. Khalyavin, J.P. Han, A.M. Senos, P.Q. Mantas, Sci. Forum 455, 30–34 (2004). https://doi.org/10.4028/www.scientific.net/msf.455-456.30. (Trans Tech Publications, Ltd)

    Article  Google Scholar 

  5. L. Skutina, E. Filonova, D. Medvedev, A. Maignan, Cells. Mater. 14(7), 1715 (2021). https://doi.org/10.3390/ma14071715

    Article  CAS  Google Scholar 

  6. R. VaradwajPradeep, H.M. Marques, Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00796

    Article  Google Scholar 

  7. R.S. Lamba, P. Basera, S. Bhattacharya, S. Sapra, Phys. Chem. Lett. 10(17), 5173–5181 (2019). https://doi.org/10.1021/acs.jpclett.9b02168

    Article  CAS  Google Scholar 

  8. IlariaCarlomagno AbhisekBandyopadhyay, M. Laura Simonelli, A.E. MorettiSala, C. Meneghini, S. Ray, Phys. Rev. B 100, 064416 (2019). https://doi.org/10.1103/PhysRevB.100.064416

    Article  Google Scholar 

  9. I.D. SayantikaBhowal, Phys. Rev. B 97, 024406 (2018). https://doi.org/10.1103/PhysRevB.97.024406

    Article  Google Scholar 

  10. N.V. Urusova, M.A. Semkin, E.A. Filonova, M. Kratochvilova, D.S. Neznakhin, J.-G. Park, A.N. Pirogov, J. Phys.: Conf. Ser. 1389, 012131 (2019). https://doi.org/10.1088/1742-6596/1389/1/012131

    Article  CAS  Google Scholar 

  11. M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas, G. Janusas, Nanomaterials 10(9), 1627 (2020). https://doi.org/10.3390/nano10091627

    Article  CAS  Google Scholar 

  12. J. Smit, H.P.J. Wijn, Adv. Electr. Electron Phys. 6, 69–136 (1954). https://doi.org/10.1016/S0065-2539(08)60132-8

    Article  Google Scholar 

  13. K. Jawahar, R.N.P. Choudhary, Matter. Lett. 62, 911 (2008)

    Article  CAS  Google Scholar 

  14. C.G. Koops, Phys. Rev. 83, 121 (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  CAS  Google Scholar 

  15. N. Rezlescu, E. Rezlescu, Phys. Stat. Sol. A 23, 575 (1974). https://doi.org/10.1002/pssa.2210230229

    Article  CAS  Google Scholar 

  16. S.H. Kim, K.D. Park, H.S. Lee, Energies 14, 275 (2021). https://doi.org/10.3390/en14020275

    Article  CAS  Google Scholar 

  17. D.K. Mahato, A. Dutta, T.P. Sinha, Bull. Mater. Sci. 34(3), 455–462 (2011)

    Article  CAS  Google Scholar 

  18. J.W. Chen, K.R. Chiou, A.C. Hsueh, C.R. Chang, RSC Adv. 9, 12319–12324 (2019)

    Article  CAS  Google Scholar 

  19. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387–395 (2013)

    Article  CAS  Google Scholar 

  20. J. Plocharski, W. Wieczoreck, Solid State Ion. 28, 979–982 (1982)

    Google Scholar 

  21. M.A.L. Nobre, S. Lanfredi, J. Phys. Chem. Solid. 62, 1999 (2001)

    Article  CAS  Google Scholar 

  22. S. Behera, B.N. Parida, P. Nayak, P.R. Das, J. Mater. Sci. Mater. Electron. 24, 1132 (2013)

    Article  CAS  Google Scholar 

  23. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)

    Article  CAS  Google Scholar 

  24. T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132 (1990)

    Article  CAS  Google Scholar 

  25. M. Siekierski, W. Wieczorek, Solid State Ionics 60(1–3), 67–71 (1993). https://doi.org/10.1016/0167-2738(93)90276-9

    Article  CAS  Google Scholar 

  26. H. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Sci. Rep. 7, 8726 (2017). https://doi.org/10.1038/s41598-017-06966-7

    Article  CAS  Google Scholar 

  27. G. Blasse, J. Chem. Phys. 45, 2356 (1966)

    Article  CAS  Google Scholar 

  28. H.S. Kim, L. Bi, G.F. Dionne, C.A. Ross, H.J. Paik, phys Rev. B. 77, 214436 (2008)

    Article  Google Scholar 

  29. Z.X. Cheng, X.L. Wang, S.X. Dou, H. Kimura, K. Ozawa, Phys. Rev. B 77, 092101 (2008)

    Article  Google Scholar 

  30. C. Kursun, M. Gogebakan, E. Uludag, M.S. Bozgeyik, F.S. Uludag, Sci. Rep. 8, 13083 (2018). https://doi.org/10.1038/s41598-018-31458-7

    Article  CAS  Google Scholar 

Download references

Funding

There is no funding applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [SM], [SS], [SB] and [BNP]. The first draft of the manuscript was written by [SM] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to S. Behera or B. N. Parida.

Ethics declarations

Competing interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, S., Sen, S., Behera, S. et al. Multiferroic and optical characteristics of Mg2(Fe0.85Ni0.15)NbO6 for possible energy storage application. J Mater Sci: Mater Electron 33, 23770–23780 (2022). https://doi.org/10.1007/s10854-022-09135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09135-3

Navigation