Skip to main content
Log in

Synthesis of γ-Fe2O3-CuO nanocomposite: structural and magnetic study and its application for degradation of toxic pollutants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, γ-Fe2O3 and CuO nanoparticles were synthesized by precipitation method without using surfactant or using green surfactants. Then the γ-Fe2O3-CuO nanocomposites were fabricated. The XRD was used to investigate the crystalline lattice of γ-Fe2O3 and CuO nanoparticles and γ-Fe2O3-CuO nanocomposites. The CuO and γ-Fe2O3 particles have monoclinic and cube phases, respectively. The Scherrer formula calculated average particle crystallite size about 19, 23, and 18 nm for γ-Fe2O3, CuO, and γ-Fe2O3-CuO, respectively. The morphology, shape, and size of products were characterized via SEM and TEM. The medium size of all nanostructures was estimated under 100 nm. The hysteresis curve of γ-Fe2O3 was investigated via a vibrating sample magnetometer (VSM). The synthesized γ-Fe2O3 nanoparticles are a soft ferromagnetic and had a coercivity about 20 Oe. Photocatalytic properties of Fe2O3-CuO composites were checked out via the decay of acid blue, acid violet, and acid black azo dyes in UV light irradiation. The nanocomposites have a photocatalyst degradation about 90% in 10 minutes under UV light irradiation, which has a significant advantage over other works done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All relevant data are included in the article.

References

  1. T.K. Kundu, D. Chakravorty, Indian J. Phys. A 78(1), 53 (2004)

    Google Scholar 

  2. A. Kale, S. Gubbala, R.D.K. Misara, J. Magn. Magn. Mater. 277(3), 350 (2004)

    Article  CAS  Google Scholar 

  3. S. Heydari, L. Zare, S. Eshagh Ahmadi, J. Iran. Chem. Soc. 18, 3417 (2021)

    Article  CAS  Google Scholar 

  4. D. Ghanbari, M. Salavati-Niasari, M. Esmaeili-Zare, P. Jamshidi, F. Akhtarianfar, J. Ind. Eng. Chem. 20(5), 3709 (2014)

    Article  CAS  Google Scholar 

  5. K. Hedayati, S. Azarakhsh, D. Ghanbari, J. Nanostruct. 6(2), 127 (2016)

    CAS  Google Scholar 

  6. O. Gomez Daza, A.A.C. Readigos, J. Campos, M.T.S. Nair, P.K. Nair, Mod. Phys. Lett. B 15, 609 (2001)

    Article  Google Scholar 

  7. H. Uslu, S. Altındal, I. Polat, H. Bayrak, E. Bacaksız, J. Alloys Compd. 509, 5555 (2011)

    Article  CAS  Google Scholar 

  8. M. Goodarzi, S. Joukar, D. Ghanbari, K. Hedayati, J. Mater. Sci.: Mater. Electron. 28, 12823 (2017)

    CAS  Google Scholar 

  9. Z. Ebrahimi, K. Hedayati, D. Ghanbari, J. Mater. Sci.: Mater. Electron. 28, 13956 (2017)

    CAS  Google Scholar 

  10. D. Ghanbari, S. Sharifi, A. Naraghi, G. Nabiyouni, J. Mater. Sci.: Mater. Electron. 2, 5315 (2016)

    Google Scholar 

  11. G. NarsingaRao, Y.D. Yao, J.W. Chen, Apply phys. 101, 09H119 (2007)

    Article  Google Scholar 

  12. M. Yousefi, E. Noori, D. Ghanbari, M. Salavati-Niasari, T. Gholami, J. Cluster Sci. 25, 397 (2014)

    Article  CAS  Google Scholar 

  13. A. Azam, A.S. Ahmed, M.S. Ansari, M.M. Shafeeq, A.H. Naqvi, J Alloy Comp. 506, 237 (2010)

    Article  CAS  Google Scholar 

  14. A. Naseri, M. Goodarzi, D. Ghanbari, J. Mater. Sci.: Mater. Electron. 28, 17635 (2017)

    CAS  Google Scholar 

  15. M.R. Hajizadeh, A. Nematpour Keshteli, Q.V. Bach, J Mol Liq 2020, 114188 (2020)

    Article  Google Scholar 

  16. K. Diao, J. Xiao, Z. Zheng, X. Cui, Appl. Surf. Sci. 459, 630 (2018)

    Article  CAS  Google Scholar 

  17. G. Ren, D. Hu, E.W. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker, Int. J. Antimicrob. Agents 33, 587 (2009)

    Article  CAS  Google Scholar 

  18. Z. Zailei, C. Hongwei, W. Yingli, S. Lianying, Z. Ziyi, S. Fabing, Catal. Sci. Technol. 2, 1953 (2012)

    Article  Google Scholar 

  19. S.F. Hasany, I. Ahmed, J. Rajan, A. Rehman, Nanosci. Nanotechnol. 2, 148 (2012)

    Article  Google Scholar 

  20. M. Masjedi-Arani, M. Salavati-Niasari, D. Ghanbari, G. Nabiyouni, Ceram. Int. 40(1), 495 (2014)

    Article  CAS  Google Scholar 

  21. R. Dronskowski, Adv. Funct. Mater. 11, 27 (2001)

    Article  CAS  Google Scholar 

  22. Q. Chang, H. Liang, B. Shi, H. Wu, iScience 25(3), 103925 (2022)

    Article  CAS  Google Scholar 

  23. K. Hedayati, M. Goodarzi, M. Kord, Main Group Met. Chem. 39, 183 (2016)

    Article  CAS  Google Scholar 

  24. J. Ambigadevi, P. Senthil Kumar, D.N. Vo, S. Hari Haran, T.N. Srinivas Raghavan, J. Environ. Chem. Eng. 9, 104881 (2021)

    Article  CAS  Google Scholar 

  25. L. Abbasi, K. Hedayati, D. Ghanbari, J. Mater. Sci.: Mater. Electron. 32, 14477 (2021)

    CAS  Google Scholar 

  26. S.J. Kashyap, R. Sankannavar, G.M. Madhu, Mater. Chem. Phys. 286, 126118 (2022)

    Article  CAS  Google Scholar 

  27. Y. Zhao, J. Zhao, Y. Li, D. Ma, S. Hou, L. Li, X. Hao, Z. Wang, Nanotechnology 22, 115604 (2011)

    Article  Google Scholar 

  28. C. El Pastrana, V. Zamora, D. Wang, H. Alarcón, Adv. Nat. Sci. Nanosci. Nanotechnol. 10, 035012 (2019)

    Article  CAS  Google Scholar 

  29. Y.Y. Xu, L. Wang, T. Wu, R.M. Wang, Rare Met. 38, 14 (2019)

    Article  CAS  Google Scholar 

  30. P.I. Kyesmen, N. Nombona, M. Diale, J. Alloy. Compd. 863, 158724 (2021)

    Article  CAS  Google Scholar 

  31. L. Panl, J. Tang, F. Wang, Cent. Eur. J. Chem. 11(5), 763 (2013)

    Google Scholar 

  32. B. Lahijani, K. Hedayati, M. Goodarzi, Main Group Met. Chem. 41(3–4), 53 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

Authors state no funding involved.

Author information

Authors and Affiliations

Authors

Contributions

ATF performed writing—original draft, writing, and formal analysis; MG contributed to writing—original draft, writing—review and editing, formal analysis, visualization, and project administration; KH contributed to writing—original draft, writing—review and editing, methodology, and formal analysis.

Corresponding authors

Correspondence to Mojtaba Goodarzi or Kambiz Hedayati.

Ethics declarations

Conflict of interest

Authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahani, A.T., Goodarzi, M. & Hedayati, K. Synthesis of γ-Fe2O3-CuO nanocomposite: structural and magnetic study and its application for degradation of toxic pollutants. J Mater Sci: Mater Electron 33, 23761–23769 (2022). https://doi.org/10.1007/s10854-022-09134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09134-4

Navigation