Skip to main content
Log in

Analysing the dielectric properties of ZnO doped PVDF/PMMA blend composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Composite films of polyvinylidene fluoride (PVDF)/polymethyl methacrylate (PMMA) blend filled with zinc oxide in 0.5%, 1%, 2%, and 4% wt concentration were prepared by solution-casting technique. The values of impedance parameters, viz. capacitance (C) and dissipation factor (D), were measured using impedance analyser (Wanyne Kerr 6500B) and from this data the effect of doping levels on the dielectric properties, viz. complex dielectric function, electrical conductivity and electric modulus of these films were investigated in the frequency range 102–106 Hz at ambient temperature. It was observed that the dielectric constant (ε), AC conductivity (σAC) and loss tangent (tanδ) increase significantly with increase in ZnO content. A direct correlation between the dielectric parameter and the mean relaxation time of polymer chain segmental dynamics has been observed and it can be inferred that varying amount of metal oxide filler can be used to tailor the dielectric properties of these materials for their use in microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during this study are available from the corresponding author on a reasonable request.

References

  1. A.I. Isayev, Encyclopedia of Polymer Blends, Vol. 1: Fundamentals (2010).

    Google Scholar 

  2. L.A. Utracki, C. Wilkie, Polymer Blend Handbook (Springer, Dordrecht, 2014)

    Book  Google Scholar 

  3. S. Choudhary, R.J. Sengwa, Curr. Appl. Phys. 18(9), 1041 (2018)

    Article  Google Scholar 

  4. S. Thomas, Y. Grohens, P. Jyotishkumar, Characterisation of Polymer Blends: Miscibility, Morphology and Interfaces, Vol. 1 (Wiley, Weinheim, 2015).

    Google Scholar 

  5. X. Xie, D. Li, T.H. Tsai, J. Liu, P.V. Braun, D.G. Cahill, Macromolecules 49(3), 972 (2016). https://doi.org/10.1021/acs.macromol.5b02477

    Article  CAS  Google Scholar 

  6. P. Dhatarwal, R.J. Sengwa, Mater. Res. Bull. 129, 110901 (2020). https://doi.org/10.1016/j.materresbull.2020.110901

    Article  CAS  Google Scholar 

  7. R. Nie, Y. Li, L. Jia, J. Lei, H. Huang, Z. Li, J. Polym. Sci. Part B 57, 1043 (2019). https://doi.org/10.1002/polb.24858

    Article  CAS  Google Scholar 

  8. J. Joseph, K. Deshmukh, K. Chidambaram, Md. Faisal, E. Selvarajan, K.K. Sadasivuni, M.B. Ahamed, S.K.K. Pasha, J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-0150-6

    Article  Google Scholar 

  9. Md. Idrees, S. Batool, Q. Zhuang, J. Kong, I. Seok, J. Zhang, H. Liu, V. Murugadoss, Q. Gao, Z. Guo, Ceram. Int. 45, 10572–10580 (2019)

    Article  CAS  Google Scholar 

  10. K. Deshmukh, M.B. Ahamed, R. Rajendra, R. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S.K.K. Pasha, M.A.A. Almaadeed, A.R. Polu, K. Chidambaram, J. Electr. Mater. 46(4), 2406 (2017). https://doi.org/10.1007/s11664-017-5304-4

    Article  CAS  Google Scholar 

  11. V.R. Jeedi, E.L. Narsaiah, M. Yall, SN Appl. Sci. 2, 2093 (2020). https://doi.org/10.1007/s42452-020-03868-82020

    Article  CAS  Google Scholar 

  12. M.I. Mohammed, Polym. Bull. 79, 2443 (2022). https://doi.org/10.1007/s00289-021-03606-z

    Article  CAS  Google Scholar 

  13. Bo. Lu, K. Lamnawar, A. Maazouz, H. Zhang, Soft Matter 12(13), 3252–3264 (2016). https://doi.org/10.1039/c5sm02659h

    Article  CAS  Google Scholar 

  14. J. Wendorff, J. Polym. Sci. 18, 439 (1980). https://doi.org/10.1002/pol.1980.130180607

    Article  CAS  Google Scholar 

  15. A.D. Neef, C. Samuel, G. Stoclet, Md. Rguiti, C. Courtois, P. Dubois, J. Soulestin, J.M. Raquez, Soft Matter 14, 4591 (2018). https://doi.org/10.1039/C8SM00268A

    Article  Google Scholar 

  16. R. Kandulna, R.B. Choudhary, Polym. Bull. 75, 3089 (2018)

    Article  CAS  Google Scholar 

  17. N. Bouropoulos, G.C. Psarras, N. Moustakas, A. Chrissanthopoulos, S. Baskoutas, Phys. Stat. Sol. A 205, 2033 (2008)

    Article  CAS  Google Scholar 

  18. H. Wang, Q. Chen, W. Xia, X. Qiu, Q. Cheng, G. Zhu, J. Appl. Polym. Sci. 135, 46324 (2018). https://doi.org/10.1002/app.46324

    Article  CAS  Google Scholar 

  19. S. Karadaş. A. Yerişkin, M. Balbaşı, Y. A. Kalandaragh, J. Phys. Chem. Solids 148, 109740 (2021). https://doi.org/10.1016/j.jpcs.2020.109740

  20. S. Demirezen, S.A. Yerişkin, J. Mater. Sci. 32, 25339 (2021). https://doi.org/10.1007/s10854-021-06993-1

    Article  CAS  Google Scholar 

  21. S. Choudhary, Physica B 522, 48 (2017)

    Article  CAS  Google Scholar 

  22. D. Thomas, K.A. Vijayalakshmi, J.J. Mathen, S. Augustine, D. Ponnamma, K.K. Sadasivuni, J.J. Cabibihan, Polym. Bull. 74(8), 4989 (2017). https://doi.org/10.1007/s00289-017-1998-y

    Article  CAS  Google Scholar 

  23. S. Choudhary, R.J. Sengwa, Electrochim. Acta 247, 924 (2017)

    Article  CAS  Google Scholar 

  24. R. Tailor, Y.K. Vijay, M. Bafna, Environmental emissions. IntechOpen. (2019). https://doi.org/10.5772/intechopen.92389

    Article  Google Scholar 

  25. R. Tailor, M. Bafna, Y.K. Vijay, Int. J. Sci. Tech. Res. 8(11), 3616 (2019)

    Google Scholar 

  26. M. Bafna, N. Garg, A.K. Gupta, J. Emerg. Technol. Innov. Res. 5, 494 (2018)

    Google Scholar 

  27. A.K. Gupta, M. Bafna, A.K. Agarwal, N. Sain, Mater. Today (2020). https://doi.org/10.1016/j.matpr,08.676

    Article  Google Scholar 

  28. M. Bafna, A.K. Agarwal, N. Sain, V. Jain, Mater. Today 38, 1209 (2021)

    CAS  Google Scholar 

  29. M. Bafna, A.K. Gupta, R.K. Khanna, Y.K. Vijay, Mater. Today 30(1), 11 (2020). https://doi.org/10.1016/j.matpr.2020.03.736

    Article  CAS  Google Scholar 

  30. M. Bafna, N. Sain, A. Khandelwal, F. Deeba, A.K. Gupta, Mater. Today (2022). https://doi.org/10.1016/j.matpr.2022.06.370

    Article  Google Scholar 

  31. A.K. Gupta, M. Bafna, R.K. Khanna, S. Shrivasata, Y.K. Vijay, Environ. Sci. Pollut. Res. 24(6), 1 (2020)

    Google Scholar 

  32. M. Bafna, A.K. Gupta, Y.K. Vijay, Bull. Mater. Sci 41(6), 160 (2018)

    Article  Google Scholar 

  33. M. Bafna, A.K. Gupta, R.K. Khanna, J. Emerg. Technol. Innov. Res. 5, 433 (2018)

    Google Scholar 

  34. M. Bafna, A.K. Gupta, R.K. Khanna, Mater. Today 10, 38 (2019)

    CAS  Google Scholar 

  35. F. Deeba, M. Bafna, A. Jain, SGVU Int. J. Environ. Sci. Technol. 8(1), 46 (2021)

    Google Scholar 

  36. F. Deeba, A.K. Gupta, V. Kulshestra, M. Bafna, A. Jain, Mater. Today (2022). https://doi.org/10.1016/j.matpr.2022.06.417

    Article  Google Scholar 

  37. P.L. Reddy, K. Deshmukh, K. Chidambaram, Md.M.N. Ali, K.K. Sadasivuni, Y.R. Kumar, K.K. Pasha, J. Mater. Sci 30, 4676 (2019). https://doi.org/10.1007/s10854-019-00761-y

    Article  CAS  Google Scholar 

  38. M.V. Galaburdaa, P. Klonos, V.M. Gunkoa, V.M. Bogatyrova, M.V. Borysenkoa, P. Pissis, App. Surf. Sc. 305, 67 (2014)

    Article  Google Scholar 

  39. H. Rekik, Z. Ghallabi, I. Royaud, M. Arous, G. Seytre, G. Boiteux, A. Kallel, Compos. B Eng. 45(1), 1199 (2013)

    Article  CAS  Google Scholar 

  40. A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, P.C. Ramamurthy, Compos. B Eng. 47, 314 (2013)

    Article  CAS  Google Scholar 

  41. H.N. Chandrakala, B. Ramaraj, S.K. Raiah, J.H. Lee, M. Siddaramaiah, J. Alloys Compd. 580, 392 (2013)

    Article  CAS  Google Scholar 

  42. U. Siemann, Progr. Colloid Polym. Sci. 130, 1 (2005). https://doi.org/10.1007/b107336Springer-Verlag2005

    Article  CAS  Google Scholar 

  43. S. Karadaş, S.A. Yerişkin, M. Balbaşı, Y.A. Kalandaragh, J. Phys. Chem. Solids 148, 109740 (2021)

    Article  Google Scholar 

  44. P. Basnet, D. Samanta, T.I. Chanu, J. Mukherjee, S. Chatterjee, SN Appl. Sci. 1(6), 633 (2019)

    Article  Google Scholar 

  45. S. Choudhary, R.J. Sengwa, J. Polym. Res. 24(3), 54 (2017)

    Article  Google Scholar 

  46. W. Zhang, X. Zhu, L. Liang, P. Yin, P. Xie, D. Dastan, K. Sun, R. Fan, Zhicheng. J. Mater. Sci. 56, 4254 (2021). https://doi.org/10.1007/s10853-020-05536-z

    Article  CAS  Google Scholar 

  47. K. Deshmukh, M.B. Ahamed, R. Rajendra, R. Deshmukh, S.K.K. Pasha, K.K. Sadasivuni, A.R. Polu, D. Ponnamma, M.A.-A. Al Maadeed, K. Chidambaram, J. Mater. Sci. 28, 973–986 (2017)

    CAS  Google Scholar 

  48. H.A.J. Hussien, G. Raheem, Kadhim, A. Hashim, J. Phys. 1818, 012187 (2021). https://doi.org/10.1088/1742-6596/1818/1/012187

    Article  CAS  Google Scholar 

  49. R.J. Sengwa, P. Dhatarwal, S. Choudhary, Mat. Today Commun. 25, 101380 (2020)

    Article  CAS  Google Scholar 

  50. R.J. Sengwa, P. Dhatarwal, S. Choudhary, J. Mater. Sci. 30, 12275 (2019)

    CAS  Google Scholar 

  51. P. Dhatarwal, S. Choudhary, R.J. Sengwa, Mater. Lett. 273, 127913 (2020)

    Article  CAS  Google Scholar 

  52. B. Arslan, S.O. Tan, H. Tecimer, S. Altındal, J. Mater. Sci. 32(9), 26700 (2021)

    CAS  Google Scholar 

  53. M. Zhang, Z. Shi, J. Zhang, K. Zhang, L. Lei, D. Dastan, B. Dong, J. Mater. Chem. (C) (2021). https://doi.org/10.1039/D1TC01974K

    Article  Google Scholar 

  54. S. Sun, Z. Shi, L. Sun, L. Liang, D. Dastan, B. He, H. Wang, M. Huang, R. Fan, A.C.S. Appl, Mater. Interfaces 13, 27522–27532 (2021)

    Article  CAS  Google Scholar 

  55. R.P. Chaudhary, C. Parameswaran, M. Idrees, A.S. Rasaki, C. Liu, W.H. Zhang, P. Colombo, Progr. Mater. Sci. 128, 100969 (2022). https://doi.org/10.1016/j.pmatsci.2022.100969

    Article  CAS  Google Scholar 

  56. L. Sun, Z. Shi, B. He, H. Wang, S. Liu, M. Huang, J. Shi, D. Dastan, H. Wang, Adv. Mater. Funct. 13, 27522–27532 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. (Dr.) Mirza S. Baig, IIT—Indore and Dr. Balram Tripathi, Department of Physics, S.S. Jain Subodh PG (Autonomous) College, for providing experimental facilities and technical support to find the structure of my samples with Impedance spectroscopy and its use.

Funding

The Authors declares that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception and design of the manuscript. Material preparation, data collection, characterization and analysis were performed by FD, AKG, VK, MB and AJ. The first draft of the manuscript was written by FD and all authors contributed for the modified final versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ankur Jain.

Ethics declarations

Conflict of interest

The authors have no relevant financial and non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deeba, F., Gupta, A.K., Kulshrestha, V. et al. Analysing the dielectric properties of ZnO doped PVDF/PMMA blend composite. J Mater Sci: Mater Electron 33, 23703–23713 (2022). https://doi.org/10.1007/s10854-022-09129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09129-1

Navigation