Skip to main content
Log in

Temperature-dependent analysis of dielectric behaviour of Co3O4/NiO nanocomposites with varying NiO concentration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, we report the dielectric, impedance, modulus and conductivity study of Co3O4, NiO & Co3O4-NiO nanocomposites with varying NiO concentration (10%, 40%). XRD analysis suggests crystalline phases of pure NiO, Co3O4 and the nanocomposite samples. The crystallite size was calculated using SSP method. The analysis of experimental results indicate that dielectric constant (ε′), dielectric loss factor (tan δ) and a.c. conductivity σac(ω) are temperature, frequency and concentration dependent. It was found that while dielectric constant is an increasing function of temperature, it decreases with increasing frequency. The activation energy (Ea) of the ac conduction have been found between 0.085 and 0.13 eV for all the samples. To discuss the conduction mechanism, the AC conductivity and temperature dependence of frequency exponent ‘s’ have been analysed based on Correlated Barrier Hopping (CBH) and Non-Overlapping Small Polaron tunneling (NSPT) model. Simultaneously, correlated AC conductivity data with CBH & NSPT model were used to calculate the value of maximum barrier height (binding energy) (Wm), AC activation energy, tunnelling distance (Rw) and density of states at Fermi level N (EF). The Nyquist plot from complex impedance spectrum shows only one semicircular arc representing the grain boundary effect in the electrical conduction. The modulus mechanism indicates the non-Debye type of conductivity relaxation in the material, which is supported by impedance data. The variation of AC conductivity as function of temperature indicates that the conduction is due to thermally activated charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15
Fig.16
Fig.17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. F. Ansari, P. Nazari, M. Payandeh, F.M. Asl, B. Abdollahi-Nejand, V. Ahmadi, J. Taghiloo, M. Salavati-Niasari, Nanotechnology 29, 075404 (2018)

    Article  Google Scholar 

  2. O. Amiria, N. Mir, F. Ansarid, M. Salavati-Niasari, Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2017.09.013

    Article  Google Scholar 

  3. F. Ansari, M. Salavati-Niasari, P. Nazari, N. Mir, V. Ahmad, B.A. Nejand, Energy Mater. 1(11), 6018–6026 (2018)

    Google Scholar 

  4. P. Nazari, F. Ansari, B. Abdollahi Nejand, V. Ahmadi, M. Payandeh, M. Salavati-Niasari, J. Phys. Chem. C (2017). https://doi.org/10.1021/acs.jpcc.7b07061

    Article  Google Scholar 

  5. F. Ansari, A. Sobhani, M. Salavati-Niasari, J. Colloid Interface Sci. (2018). https://doi.org/10.1016/j.jcis.2017.12.083

    Article  Google Scholar 

  6. M. Mahdiani, F. Soofivand, F. Ansari, M. Salavati-Niasari, J. Cleaner Prod. (2018). https://doi.org/10.1016/j.jclepro.2017.11.177

    Article  Google Scholar 

  7. T. Gordon, M. Kopel, J. Grinblat, E. Banin, S. Margel, Mater. Chem. 22, 3614 (2012)

    Article  CAS  Google Scholar 

  8. K. Anandan, V. Rajendran, Mater. Sci. Semicond. Process. (2011). https://doi.org/10.1016/j.mssp.2011.01.001

    Article  Google Scholar 

  9. N.J. Tharayila, R. Raveendrana, A.V. Vaidyan, P.G. Chithra, Indian J. Eng. Mater. Sci. 15(6), 489–496 (2008)

    Google Scholar 

  10. N. Srivastava, P.C. Srivastava, Bull. Mater. Sci. 33, 6 (2010)

    Article  Google Scholar 

  11. L. Chen, L. Li, G. Li, J. Solid State Chem. (2008). https://doi.org/10.1016/j.jssc.2008.04.012

    Article  Google Scholar 

  12. K.C. Kao, Dielectric phenomenan in solids, 1st edn. (Elsevier, Amsterdam, 2004), pp.1–579

    Book  Google Scholar 

  13. M. Pastor, P.K. Bajpai, R.N. Choudhary, J. Phys. Chem. Solids 68(10), 14–20 (2007)

    Article  Google Scholar 

  14. R. Gerhardt, J. Phys. Chem. Solids 55, 12 (1994)

    Article  Google Scholar 

  15. A.K. Jonscher, J. Phys. D: Appl. Phys. 32, 14 (1999)

    Article  Google Scholar 

  16. J.T. Irvine, D.C. Sinclair, A.R. West, Adsv. Mater 2(3), 132–138 (1990)

    Article  CAS  Google Scholar 

  17. S. Lanfredi, A.C.M. Rodrigues, J. Appl. Phys. 86, 2215 (1999)

    Article  CAS  Google Scholar 

  18. M.Z. Iqbal, Curr. Appl. Phys. 16(9), 974–979 (2016)

    Article  Google Scholar 

  19. M. Morales, J.J. Roa, J.M. Perez-Falcón, A. Moure, J. Tartaj, F. Espiell, M. Segarra, J. Power Sources. (2014). https://doi.org/10.1016/j.jpowsour.2013.08.028

    Article  Google Scholar 

  20. L.N. Patro, K. Hariharan, Ionics (2013). https://doi.org/10.1007/s11581-012-0784-y

    Article  Google Scholar 

  21. N.H. Vasoya, V.K. Lakhani, P.U. Sharma, K.B. Modi, R. Kumar, H.H. Joshi, J. Phys.: Condens. Matter 18, 34 (2006)

    Google Scholar 

  22. Y.H. Lin, M. Li, C.W. Nan, J.F. Li, J.B. Wu, J.L. He, Appl. Phys. Lett. 89, 032907 (2006)

    Article  Google Scholar 

  23. J.B. Wu, C.W. Nan, Y.H. Lin, Y. Deng, Phys. Rev. Lett. (2002). https://doi.org/10.1103/PhysRevLett.89.217601

    Article  Google Scholar 

  24. A. Dey, A. De, S.K. De, J. Phys.: Condens. Matter 17, 37 (2005)

    Google Scholar 

  25. N. Ponpandian, P. Balaya, A. Narayanasamy, J. Phys.: Condens. Matter 14, 12 (2002)

    Google Scholar 

  26. A. Dey, S. De, A. De, S.K. De, J. Nanosci. Nanotechnol. 6, 5 (2006)

    Google Scholar 

  27. M. Banerjee, S. Mukherjee, S. Maitra, Cerâmica 58, 345 (2012)

    Article  Google Scholar 

  28. D. Adler, J. Feinleib, Phys. Rev. B (1970). https://doi.org/10.1103/PhysRevB.2.3112

    Article  Google Scholar 

  29. N. Fuschillo, B. Lalevic, B. Leung, Thin Solid Films 24, 1 (1974)

    Article  Google Scholar 

  30. K.V. Rao, A. Smakula, J. Appl. Phys. 36, 2031 (1965)

    Article  CAS  Google Scholar 

  31. Y. Lin, R. Zhao, J. Wang, J. Cai, C.-W. Nan, J. Am. Ceram. Soc. 88, 7 (2005)

    Google Scholar 

  32. S. Manna, K. Dutta, S.K. De, J. Phys. D: Appl. Phys. 41, 15 (2008)

    Article  Google Scholar 

  33. Y.-J. Hsiao, Y.-S. Chang, T.-H. Fang, Y.-L. Chai, C.-Y. Chung, Y.-H. Chang, J. Phys. D: Appl. Phys. 40, 863 (2007)

    Article  CAS  Google Scholar 

  34. S. Manna, S.K. De, Solid State Commun. 150, 9 (2010)

    Article  Google Scholar 

  35. L. Chen, L. Li, G. Li, J. Solid State Chem. 181, 8 (2008)

    Google Scholar 

  36. V. Biju, M.A. Khadar, Mater. Sci. Eng. A (2001). https://doi.org/10.1016/S0921-5093(00)01581-1

    Article  Google Scholar 

  37. P. Thongbai, T. Yamwong, S. Maensiri, J. Appl. Phys. 104, 7 (2008)

    Google Scholar 

  38. P.K. Jana, S. Sarkar, B.K. Chaudhuri, Appl. Phys. Lett. 88, 18 (2006)

    Article  Google Scholar 

  39. P.K. Jana, S. Sarkar, B.K. Chaudhuri, J. Phys. D Appl. Phys. 40, 556 (2007)

    Article  CAS  Google Scholar 

  40. D.D.M. Prabaharan, K. Sadaiyandi, M. Mahendran, S. Sagadevan, Appl. Phys. A Mater. Sci. Process. 123, 264 (2017)

    Article  Google Scholar 

  41. H.S. Rasheed, Physics AUC 29, 36 (2019)

    Google Scholar 

  42. S. Sumathi, M. Nehru, J. Supercond. Nov. Magn. (2016). https://doi.org/10.1007/s10948-016-3416-3

    Article  Google Scholar 

  43. J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Mater. Res. Bull (2017). https://doi.org/10.1016/j.materresbull.2017.04.013

    Article  Google Scholar 

  44. J. Gupta, A.S. Ahmed, Physica B 599, 412383 (2020)

    Article  CAS  Google Scholar 

  45. E. Prince, J.K. Stalick, Accuracy in powder diffraction, 2nd edn. (NIST Spec. Publ, Gaithersburg, 1992), pp.1–594

    Google Scholar 

  46. M.A. Tagliente, M. Massaro, Nucl. Instrum. Methods Phys. Res. B 266, 7 (2008)

    Article  Google Scholar 

  47. M.P. Proença, C.T. Sousa, A.M. Pereira, P.B. Tavares, J. Ventura, M. Vazquez, J.P. Araujo, Phys. Chem. Chem. Phys. 13, 20 (2011)

    Article  Google Scholar 

  48. G. Anandha Babu, G. Ravi, Y. Hayakawa, Appl. Phys. A Mater. Sci. Process (2015). https://doi.org/10.1007/s00339-014-8951-9

    Article  Google Scholar 

  49. A.S. Ahmed, J. Gupta, A.H. Anwer, M.Z. Khan, Phys. B: Condens. Matter 629, 413623 (2021)

    Article  Google Scholar 

  50. W. Shocklev, Phys. Rev. 87, 835 (1952)

    Article  Google Scholar 

  51. N. Ahmad, S. Khan, M.M.N. Ansari, Ceram. Int. 44, 13 (2018)

    Google Scholar 

  52. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, J. Appl. Phys. 112, 084321 (2012)

    Article  Google Scholar 

  53. I. Khan, S. Khan, W. Khan, Mater. Sci. Semicond. Process (2014). https://doi.org/10.1016/j.mssp.2014.05.028

    Article  Google Scholar 

  54. Y. Yuan, Z. Iqbal, J. Lu, Int. J. Mod. Phys. B 31, 30 (2017)

    Google Scholar 

  55. C.G. Koops, Phys. Rev. 83, 1 (1951)

    Article  Google Scholar 

  56. S. Shapiro, Sov. Phys. Usp. 15, 651 (1973)

    Article  Google Scholar 

  57. M.N. Siddique, A. Ahmed, P. Tripathi, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.11.114

    Article  Google Scholar 

  58. I. Khan, S. Khan, W. Khan, Mater. Sci. Semicond. Process. (2014). https://doi.org/10.1016/j.mssp.2014.05.028

    Article  Google Scholar 

  59. S. Naseem, W. Khan, S. Khan, S. Husain, A. Ahmad, J. Magn. Magn Mater. (2018). https://doi.org/10.1016/j.jmmm.2017.09.051

    Article  Google Scholar 

  60. M.A. Dar, K. Majid, K.M. Batoo, R.K. Kotnala, J. Alloy. Comp. (2015). https://doi.org/10.1016/j.jallcom.2015.01.190

    Article  Google Scholar 

  61. B.P. Das, R.N.P. Choudhary, P.K. Mahapatra, Mater. Sci. Eng. B 104, 1 (2003)

    Article  Google Scholar 

  62. BS Patial, Neha, J Prakash, R Kumar, SK Tripathi, N Thakur, J. Nano Electron. Phys. 5, 201 (2013)

  63. Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, J. Appl. Phys. 115, 144106 (2014)

    Article  Google Scholar 

  64. N. Rezlescu, E. Rezlescu, Phys. Status Solidi A (1974). https://doi.org/10.1002/pssa.2210230229

    Article  Google Scholar 

  65. R. Fastow, D. Goren, Y. Nemirovsky, J. Appl. Phys. 68, 1 (1990)

    Article  Google Scholar 

  66. S.K. Barik, P.K. Mahapatra, R.N. Choudhary, Appl. Phys. A. (2006). https://doi.org/10.1007/s00339-006-3668-z

    Article  Google Scholar 

  67. G.F. Nataf, O. Aktas, T. Granzow, E.K.H. Salje, J. Phys. Condens. Matter 28, 1 (2016)

    Article  Google Scholar 

  68. W. Shockley, W.T. Read, Statistics of the Recombinations of Holes and Electrons. Phys. Rev. 87, 835–843 (1952)

    Article  CAS  Google Scholar 

  69. A.M.A. El Ata, M.K. El Nimr, S.M. Attia, D. El Kony, A.H. Al-Hammadi, J. Magn. Magn Mater. 297, 1 (2006)

    Article  Google Scholar 

  70. R. Bhargava, S. Khan, A.I.P. Conf, Proc 1953, 030011 (2018)

    Google Scholar 

  71. M.Z. Ahsan, F.A. Khan, M.A. Islam, J. Electron. Mater. 48, 12 (2019)

    Article  Google Scholar 

  72. A. Sundar Das, D. Biswas, Mater. Res. Express 6, 7 (2019)

    Google Scholar 

  73. A.K. Jonscher, Nature (1977). https://doi.org/10.1038/267673a0

    Article  Google Scholar 

  74. B.M. Greenhoe, M.K. Hassan, J.S. Wiggins, K.A. Mauritz, J. Polym. Sci. Part B: Polym. Phys. (2016). https://doi.org/10.1002/polb.24121

    Article  Google Scholar 

  75. M. Careem, A.K. Jonscher, Philos. Mag. A (1976). https://doi.org/10.1080/14786437708232972

    Article  Google Scholar 

  76. R. Kannan, S. Rajagopan, A. Arunkumar, D. Vanidha, R. Murugaraj, J. Appl. Phys. 112, 063926 (2012)

    Article  Google Scholar 

  77. M.S. Samuel, J. Koshy, A. Chandran, K.C. George, A.I.P. Conf, Proc. 1349, 325 (2011)

    CAS  Google Scholar 

  78. M.N. Siddique, A. Ahmed, P. Tripathi, J. Alloy. Comp. (2018). https://doi.org/10.1016/j.jallcom.2017.11.114

    Article  Google Scholar 

  79. S.R. Elliott, Philos Mag B (1978). https://doi.org/10.1080/01418637808226448

    Article  Google Scholar 

  80. P.N. Musfir, S. Mathew, V.P. Nampoori, S. Thomas, Optik (2019). https://doi.org/10.1016/j.ijleo.2019.01.065

    Article  Google Scholar 

  81. I.G. Austin, N.F. Mott, Adv Phys. 18, 71 (1969)

    Article  Google Scholar 

  82. A. Kahouli, A. Sylvestre, F. Jomni, B. Yangui, J. Legrand, J. Phys. Chem. A 116, 3 (2012)

    Article  Google Scholar 

  83. A.K. Roy, A. Singh, K. Kumari, K. Amar Nath, A. Prasad, K. Prasad, ISRN Ceram. (2012). https://doi.org/10.5402/2012/854831

    Article  Google Scholar 

  84. K. Amar Nath, K. Prasad, K.P. Chandra, A.R. Kulkarni, Bull. Mater. Sci. 36(4), 591–599 (2013)

    Article  CAS  Google Scholar 

  85. N. Ahmad, S. Khan, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.05.293

    Article  Google Scholar 

  86. N. Ahmad, S. Khan, M.M.N. Ansari, R. Bhargava, AIP Conf. Proc. 2100, 020011 (2019)

    Article  Google Scholar 

  87. W.B. Soltan, S. Nasri, M.S. Lassoued, S. Ammar, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-6356-1

    Article  Google Scholar 

  88. E. Barsoukov, J.R. Macdonald, Impedance spectroscopy:theory, experiment, and applications, 2nd edn. (Wiley Online Library, New Jersey, 2005), pp.1–595

    Book  Google Scholar 

  89. S. Atiq, M. Majeed, A. Ahmad, S.K. Abbas, M. Saleem, S. Riaz, S. Naseem, Ceram. Int. 43, 2 (2017)

    Article  Google Scholar 

  90. R. Ahmad, I.H. Gul, H. Anwar, M. Bilal, A. Khan, J. Magn. Magn Mater. (2016). https://doi.org/10.1016/j.jmmm.2015.12.019

    Article  Google Scholar 

  91. A.M.M. Farea, S. Kumar, K. MujasamBatoo, A. Yousef, Alimuddin, Phys. B 403, 4 (2008)

    Article  Google Scholar 

  92. F. Schipani, D.R. Miller, M.A. Ponce, C.M. Aldao, S.A. Akbar, P.A. Morris, J.C. Xu, Sens. Actuators B (2017). https://doi.org/10.1016/j.snb.2016.10.061

    Article  Google Scholar 

  93. R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, A. Boudrioua, Opt. Mater. 30, 4 (2007)

    Article  Google Scholar 

  94. N. Ahmad, S. Khan, M.M.N. Ansari, Mater. Res. Express 5, 35045 (2018)

    Article  Google Scholar 

  95. A. Fedotov, A. Mazanik, I. Svito, A. Saad, V. Fedotova, K. Czarnacka, T.N. Koltunowicz, Acta Phys. Pol. A 128, 5 (2015)

    Article  Google Scholar 

  96. A. Srivastava, A. Barg, F.D. Morrison, J. Appl. Phys. 105, 1 (2009)

    Google Scholar 

  97. A. Kaushal, S.M. Olhero, B. Singh, P.F. Buncan, I. Bdikin, J.M.F. Ferreira, Ceram. Int 40, 7 (2014)

    Article  Google Scholar 

  98. L. Essaleh, S. Amhil, S.M. Wasim, G. Marín, E. Choukri, L. Hajji, Phys. E Low- dimens. Syst. Nanostruct. (2018). https://doi.org/10.1016/j.physe.2018.01.012

    Article  Google Scholar 

  99. M. Pollak, T.H. Geballe, Phys. Rev. 122, 1742 (1961)

    Article  CAS  Google Scholar 

  100. A. Radoń, D. Łukowiec, M. Kremzer, J. Mikuła, P. Włodarczyk, Materials 11, 5 (2018)

    Article  Google Scholar 

  101. D.K. Shukla, S. Mollah, Indian J. Pure Appl. Phys. 45, 1 (2007)

    Google Scholar 

  102. V.H. Mudavakkat, M. Noor-A-Alam, K. Kamala Bharathi, S. AlFaify, A. Dissanayake, A. Kayani, C.V. Ramana, Thin Solid Films 519(22), 7947–7950 (2011)

    Article  CAS  Google Scholar 

  103. M. Bakr Mohamed, H. Wang, H. Fuess, J. Phys. D. Appl. Phys. 43, 455409 (2010)

    Article  Google Scholar 

  104. M.G. Moustafa, M.M.S. Sanad, M.Y. Hassaan, J. Alloys Compd. 845, 156338 (2020)

    Article  CAS  Google Scholar 

  105. M. Naseem Siddique, A. Ahmed, P. Tripathi, Mater. Chem. Phys. 239, 121959 (2020)

    Article  Google Scholar 

  106. C.S. Rani, N.J. John, IJITEE. 8(11), 1862 (2019)

    Article  Google Scholar 

  107. GG Patil, SB Sayyad, PW Khirade, MA Shaikh. (2019) IJRAR 6(1).

  108. S.M. Reda, Int. J. Nano Sci. Technol. 1, 5 (2013)

    Google Scholar 

  109. S. Wang, X. Zhang, R. Yao, L. Fan, H. Zhou, Materials 12, 24 (2019)

    Google Scholar 

Download references

Acknowledgements

One of the authors, Jhalak Gupta, is very thankful to the Department of Physics, AMU Aligarh, UP India for providing FTIR experimental facility. And also thankful to Department of Applied Physics, AMU for dielectric experiment. Special thanks to UGC India for providing the financial support in the form of UGC NON-NET fellowship.

Funding

The authors have not disclosed any funding

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, Formal analysis performed by JG. The first draft was written by JG and editing was performed by ASA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Arham Shareef Ahmed.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, J., Ahmed, A.S. Temperature-dependent analysis of dielectric behaviour of Co3O4/NiO nanocomposites with varying NiO concentration. J Mater Sci: Mater Electron 33, 24182–24207 (2022). https://doi.org/10.1007/s10854-022-09119-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09119-3

Navigation