Skip to main content
Log in

Research on the removal of heavy metal ions in water by magnetically modified zeolite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zeolite has many advantages such as outstanding ion exchange performance, large specific surface area and uniform pores in the field of wastewater treatment. However, zeolites are difficult to separate from complex industrial wastewater systems. Magnetically modified zeolite (MMZ) composites with both magnetic and adsorption properties were synthesized by attaching Fe3O4 to the surface of Na-zeolite by chemical co-precipitation. MMZ can be better adsorbed from wastewater by permanent magnets for reuse. The structure, morphology and magnetic properties of MMZ were characterized. Compared with Na-zeolite, the structure of MMZ has no obvious change, Fe3O4 is evenly coated on the surface of the zeolite matrix, the specific surface area is greatly increased, and the magnetism is sufficient to attract the permanent magnet. The adsorption efficiency of MMZ for Pb2+, Cd2+, and Cu2+ in simulated wastewater was largely dependent on pH. According to the Langmuir and Freundlich isotherms to fit the equilibrium data, the maximum monolayer saturated adsorption capacities of the three ions are 83.20 mg/g, 30.58 mg/g and 16.16 mg/g, respectively, which are greatly improved compared with the samples before modification. Therefore, MMZ is an adsorbent with good adsorption performance and easy to be recycled and reused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

We declare that all data generated or analysed during this study are included in this published article. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Xu. Wang, H. Song, F. Jiao, W. Qin, C. Yang, Y. Cui, Z. Zhang, J. Zhang, H. Li, Utilization of wastewater from zeolite production in synthesis of flotation reagents. Trans. Nonferrous Met. Soc. China 30, 3093–3102 (2020). https://doi.org/10.1016/s1003-6326(20)65445-0

    Article  CAS  Google Scholar 

  2. X. Li, Y. Kuang, J. Chen, D. Wu, Competitive adsorption of phosphate and dissolved organic carbon on lanthanum modified zeolite. J. Colloid. Interface Sci. 574, 197–206 (2020). https://doi.org/10.1016/j.jcis.2020.04.050

    Article  CAS  Google Scholar 

  3. N. Iqbal, S. Iqbal, T. Iqbal, H.R. Bakhsheshirad, A. Alsakkaf, A. Kamil, M.R. Abdul Kadir, M.H. Idris, H.B. Raghav, Zinc-doped—hydroxyapatite zeolite/polycaprolactone composites coating on magnesium substrate for enhancing in-vitro corrosion and antibacterial performance. Trans. Nonferrous Met. Soc. China 30, 123–133 (2020). https://doi.org/10.1016/s1003-6326(19)65185-x

    Article  CAS  Google Scholar 

  4. T. Amiri-Yazani, R. Zare-Dorabei, M. Rabbani, A. Mollahosseini, Highly efficient ultrasonic-assisted pre-concentration and simultaneous determination of trace amounts of Pb (II) and Cd (II) ions using modified magnetic natural clinoptilolite zeolite: Response surface methodology. Microchem. J. 146, 498–508 (2019). https://doi.org/10.1016/j.microc.2019.01.050

    Article  CAS  Google Scholar 

  5. K. Chalupka, R. Sadek, L. Valentin, Y. Millot, C. Calers, M. Nowosielska, J. Rynkowski, S. Dzwigaj, Dealuminated beta zeolite modified by alkaline earth metals. J. Chem. 2018, 1–11 (2018). https://doi.org/10.1155/2018/7071524

    Article  CAS  Google Scholar 

  6. N. Amini, M. Soleimani, N. Mirghaffari, Photocatalytic removal of SO2 using natural zeolite modified by TiO2 and polyoxypropylene surfactant. Environ. Sci. Pollut. Res. Int. 26, 16877–16886 (2019). https://doi.org/10.1007/s11356-018-1305-y

    Article  CAS  Google Scholar 

  7. L. Lakiss, J.-P. Gilson, V. Valtchev, S. Mintova, A. Vicente, A. Vimont, R. Bedard, S. Abdo, J. Bricker, Zeolites in a good shape: catalyst forming by extrusion modifies their performances. Microporous Mesoporous Mater. (2020). https://doi.org/10.1016/j.micromeso.2020.110114

    Article  Google Scholar 

  8. M. Rutkowska, I. Pacia, S. Basąg, A. Kowalczyk, Z. Piwowarska, M. Duda, K.A. Tarach, K. Góra-Marek, M. Michalik, U. Díaz, L. Chmielarz, Catalytic performance of commercial Cu–ZSM-5 zeolite modified by desilication in NH 3–SCR and NH 3–SCO processes. Microporous Mesoporous Mater. 246, 193–206 (2017). https://doi.org/10.1016/j.micromeso.2017.03.017

    Article  CAS  Google Scholar 

  9. V. Erofeev, V. Khasanov, S. Dzhalilova, W. Reschetilowski, A. Syskina, L. Bogdankova, Acidic and catalytic properties of zeolites modified by zinc in the conversion process of lower C3–C4 alkanes. Catalysts (2019). https://doi.org/10.3390/catal9050421

    Article  Google Scholar 

  10. N. Blanch-Raga, A.E. Palomares, J. Martínez-Triguero, S. Valencia, Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation. Appl. Catal. B 187, 90–97 (2016). https://doi.org/10.1016/j.apcatb.2016.01.029

    Article  CAS  Google Scholar 

  11. G.-L. Wang, W. Wu, W. Zan, X.-F. Bai, W.-J. Wang, X. Qi, O.V. Kikhtyanin, Preparation of Zn-modified nano-ZSM-5 zeolite and its catalytic performance in aromatization of 1-hexene. Trans. Nonferrous Met. Soc. China 25, 1580–1586 (2015). https://doi.org/10.1016/s1003-6326(15)63761-x

    Article  CAS  Google Scholar 

  12. I.H.A.E. Maksod, A. Al-Shehri, S. Bawaked, M. Mokhtar, K. Narasimharao, Structural and photocatalytic properties of precious metals modified TiO2-BEA zeolite composites. Mol. Catal. 441, 140–149 (2017). https://doi.org/10.1016/j.mcat.2017.08.012

    Article  CAS  Google Scholar 

  13. S.S. Vieira, Z.M. Magriotis, I. Graça, A. Fernandes, M.F. Ribeiro, J.M.F.M. Lopes, S.M. Coelho, N.A.V. Santos, A.A. Saczk, Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO42−/La2O3. Catal. Today 279, 267–273 (2017). https://doi.org/10.1016/j.cattod.2016.04.014

    Article  CAS  Google Scholar 

  14. R. Murniati, H.D. Rahmayanti, F.D. Utami, A. Cifriadi, F. Iskandar, M. Abdullah, Effects of magnetically modified natural zeolite addition on the crosslink density, mechanical, morphological, and damping properties of SIR 20 natural rubber reinforced with nanosilica compounds. J. Polym. Res. (2020). https://doi.org/10.1007/s10965-020-2013-0

    Article  Google Scholar 

  15. T.S. Yan, T.X. Li, J.X. Xu, R.Z. Wang, Water sorption properties, diffusion and kinetics of zeolite NaX modified by ion-exchange and salt impregnation. Int. J. Heat Mass Transf. 139, 990–999 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.080

    Article  CAS  Google Scholar 

  16. E. Altintig, A. Alsancak, H. Karaca, D. Angın, H. Altundag, The comparison of natural and magnetically modified zeolites as an adsorbent in methyl violet removal from aqueous solutions. Chem. Eng. Commun. 2021, 1–15 (2021). https://doi.org/10.1080/00986445.2021.1874368

    Article  CAS  Google Scholar 

  17. K. Salari, S. Hashemian, M.T. Baei, Sb(V) removal from copper electrorefining electrolyte: comparative study by different sorbents. Trans. Nonferrous Met. Soc. China 27, 440–449 (2017). https://doi.org/10.1016/s1003-6326(17)60050-5

    Article  CAS  Google Scholar 

  18. H. Fu, Y. Li, Z. Yu, J. Shen, J. Li, M. Zhang, T. Ding, L. Xu, S.S. Lee, Ammonium removal using a calcined natural zeolite modified with sodium nitrate. J. Hazard. Mater. 393, 122481 (2020). https://doi.org/10.1016/j.jhazmat.2020.122481

    Article  CAS  Google Scholar 

  19. Q. Xie, Y. Lin, D. Wu, H. Kong, Performance of surfactant modified zeolite/hydrous zirconium oxide as a multi-functional adsorbent. Fuel 203, 411–418 (2017). https://doi.org/10.1016/j.fuel.2017.04.141

    Article  CAS  Google Scholar 

  20. T. Huang, M. Yan, K. He, Z. Huang, G. Zeng, A. Chen, M. Peng, H. Li, L. Yuan, G. Chen, Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. J Colloid Interface Sci 543, 43–51 (2019). https://doi.org/10.1016/j.jcis.2019.02.030

    Article  CAS  Google Scholar 

  21. J. Shi, Z. Yang, H. Dai, X. Lu, L. Peng, X. Tan, L. Shi, R. Fahim, Preparation and application of modified zeolites as adsorbents in wastewater treatment. Water Sci Technol 2017, 621–635 (2018). https://doi.org/10.2166/wst.2018.249

    Article  Google Scholar 

  22. Y.-Q. Lai, K. Yang, C. Yang, Z.-L. Tian, W.-C. Guo, J. Li, Thermodynamics and kinetics of fluoride removal from simulated zinc sulfate solution by La(III)-modified zeolite. Trans. Nonferrous Met. Soc. China 28, 783–793 (2018). https://doi.org/10.1016/s1003-6326(18)64711-9

    Article  CAS  Google Scholar 

  23. Y.-C. Lin, A. Datov, C.-C. Fang, F.-C. Chou, P.-C. Cheng, Sulfur content reduction of waste oil by modified NaY zeolite. Microporous Mesoporous Mater. (2021). https://doi.org/10.1016/j.micromeso.2020.110816

    Article  Google Scholar 

  24. Z. Wang, W. Li, J. Zhu, D. Wang, H. Meng, H. Wang, J. Li, Simultaneous adsorption of phosphate and zinc by lanthanum modified zeolite. Environ. Technol. Innov. (2021). https://doi.org/10.1016/j.eti.2021.101906

    Article  Google Scholar 

  25. Z. Milan, C. de Las Pozas, M. Cruz, R. Borja, E. Sanchez, K. Ilangovan, Y. Espinosa, B. Luna, The removal of bacteria by modified natural zeolites. J. Environ. Sci. Health A 36, 1073–1087 (2001). https://doi.org/10.1081/ese-100104132

    Article  CAS  Google Scholar 

  26. G. Mersin, Ü. Açıkel, M. Levent, Efficient adsorption of Basic Blue 41 from textile wastewaters by natural and magnetically modified Manisa-Gördes clinoptilolite. Chem. Eng. Process.—Process Intensif. (2021). https://doi.org/10.1016/j.cep.2021.108632

    Article  Google Scholar 

  27. A. Lofù, P. Mastrorilli, M.M. Dell’Anna, M. Mali, R. Sisto, R. Vignola, Iron(II) modified natural zeolites for hexavalent chromium removal from contaminated water. Arch. Environ. Prot 42, 35–40 (2016). https://doi.org/10.1515/aep-2016-0004

    Article  Google Scholar 

  28. J. Yan, Y. Li, H. Li, Y. Zhou, H. Xiao, B. Li, X. Ma, Effective removal of ruthenium (III) ions from wastewater by amidoxime modified zeolite X. Microchem. J. 145, 287–294 (2019). https://doi.org/10.1016/j.microc.2018.10.047

    Article  CAS  Google Scholar 

  29. A. Krauklis, R. Ozola, J. Burlakovs, K. Rugele, K. Kirillov, A. Trubaca-Boginska, K. Rubenis, V. Stepanova, M. Klavins, FeOOH and Mn8O10Cl3modified zeolites for As(V) removal in aqueous medium. J. Chem. Technol. Biotechnol. 92, 1948–1960 (2017). https://doi.org/10.1002/jctb.5283

    Article  CAS  Google Scholar 

  30. M. Yuan, T. Xie, G. Yan, Q. Chen, L. Wang, Effective removal of Pb2+ from aqueous solutions by magnetically modified zeolite. Powder Technol. 332, 234–241 (2018). https://doi.org/10.1016/j.powtec.2018.03.043

    Article  CAS  Google Scholar 

  31. E.G. Filatova, Y.N. Pozhidaev, O.I. Pomazkina, Adsorption of Zinc(II) and Chromium(III) ions by modified zeolites. Prot. Met. Phys. Chem. Surf. 56, 911–916 (2020). https://doi.org/10.1134/s2070205120050123

    Article  CAS  Google Scholar 

  32. X.M. Fan, Y.D. Huang, H.X. Wei, L.B. Tang, Z.J. He, C. Yan, J. Mao, K.H. Dai, J.C. Zheng, Surface modification engineering enabling 4.6°V single-crystalline Ni-rich cathode with superior long-term cyclability. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202109421

    Article  Google Scholar 

  33. Y. Huang, R. Yu, G. Mao, W. Yu, Z. Ding, Y. Cao, J. Zheng, D. Chu, H. Tong, Unique FeP@C with polyhedral structure in-situ coated with reduced graphene oxide as an anode material for lithium ion batteries. J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155670

    Article  Google Scholar 

  34. W. Kast, Principles of adsorption and adsorption processes. Chem. Eng. Process. Process Intensif. 19, 118 (1985). https://doi.org/10.1016/0255-2701(85)80013-1

    Article  Google Scholar 

  35. I. Langmuir, The constitution and fundamental properties of solids and liquids. I. Solids. J. Am. Chem. Soc. 1916, 2221–2295 (1916)

    Article  Google Scholar 

  36. C. Sheindorf, M. Rebhun, M. Sheintuch, A Freundlich-type multicomponent isotherm. J. Colloid Interface Sci. 1981, 136–142 (1981)

    Article  Google Scholar 

  37. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 373–380 (1951)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Major Science and Technology Research of Guangxi Department of Funded Projects (Grant No. 1114022-15).

Author information

Authors and Affiliations

Authors

Contributions

All persons who have made substantial contributions to the work reported in the manuscript. JL: Performed the experiments, Writing original draft; ZY, MY: Writing—review & editing, Conceptualization, Investigation, Supervision; TX: Analysis and polish the language; GY: Investigation.

Corresponding authors

Correspondence to Zhichen Yuan or Mingliang Yuan.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yuan, Z., Yuan, M. et al. Research on the removal of heavy metal ions in water by magnetically modified zeolite. J Mater Sci: Mater Electron 33, 23542–23554 (2022). https://doi.org/10.1007/s10854-022-09114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09114-8

Navigation