Skip to main content
Log in

Zeolite-magnetite composites to remove Hg2+ from water

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

It is reported an innovative though still exploratory study devoted to characterizing their structure and evaluating the response of zeolite-magnetite composites as adsorbing materials to remove Hg2+ from water. The zeolite material collected from a sampling site in Parral, Chile, was identified and structurally characterized as containing mordenite with crystallographic orthorhombic unit cell dimensions a = 18.060(1) Å; b = 20.429(2) Å and c = 7.5091(7) Å. From Mössbauer data, two paramagnetic ferric iron sites occur in its structure. This zeolite, a sample of synthetic magnetite and their two-component composites were used as adsorbers to sequester Hg2+ dissolved in water. The adsorption rate was found to reach a steady state of nearly constant Hg concentrations corresponding to 26.2; 22.1; 20.6; 17.4 and 16.7 mg Hg per g adsorber, between 24 h and 72 h reaction, for the samples zeolite only, for the composites zeolite:magnetite mass ratio 10:1; 5:1; 1:1 and for the magnetite only, respectively. These corresponding maximum adsorption capacities reduced the initial concentration of Hg2+ in water from 700 mg L−1 to an equilibrium concentration of 0; 110; 150; 240 and 250 mg L−1, respectively. Although the composites showed a lower adsorption capacity of Hg than did the sole zeolite (zeol sample), the composites contained magnetic particles, which allow the adsorbing systems to be readily removed from the aqueous medium, with a magnetic field. These combined characteristic point to the remarkable potential of such materials, particularly the mag-zeol-2, to be used to remediate natural bodies of water contaminated with Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campos, M.L.A.M., Bendo, A., Viel, F.C.: Métodos de baixo custo para purificação de reagentes e controle da contaminação para a determinação de metais traços em águas naturais. Quim Nova. 25(5), 808–813 (2002). https://doi.org/10.1590/S0100-40422002000500017

    Article  Google Scholar 

  2. Windmöller, C.C., Santos, R.C., Athayde, M., Palmieri, H.E.L.: Distribuição e especiação de mercúrio em sedimentos de áreas de garimpo de ouro do Quadrilátero Ferrífero (MG). Quim Nova. 30(5), 1088–1094 (2007). https://doi.org/10.1590/S0100-40422007000500007

    Article  Google Scholar 

  3. Lacerda, L.D., Salomons, W.: Mercury Form Gold and Silver Mining: a Chemical Time Bomb? Springer, Berlin (1998)

    Book  Google Scholar 

  4. Hacon, S., Artaxo, P., Gerab, F., Yamasoe, M.A., Campos, R.C., Conti, L.F., de Lacerda, L.D.: Atmospheric mercury and trace elements in the region of Alta Floresta in the Amazon Basin. Water, Air, and Soil Pollut. 80(1–4), 273–283 (1995). https://doi.org/10.1007/BF01189677

    Article  ADS  Google Scholar 

  5. Klingerman, D.C., La Rovere, E.L., Costa, M.A.: Management challenges on small-scale gold mining activities in Brazil. Environ. Res. 87(3), 181–198 (2001). https://doi.org/10.1006/enrs.2001.4301

    Article  Google Scholar 

  6. Nriagu, J.: Mercury pollution from the past mining of gold and silver in America. The Sci. Total Environ. 149, 167–181 (1994). https://doi.org/10.1016/0048-9697(94)90177-5

    Article  ADS  Google Scholar 

  7. Lacerda, L.D.: Global mercury emissions from gold and silver mining. Water, Air, and Soil Pollut. 97(3–4), 209–221 (1997). doi: https://doi.org/10.1023/A:1018372505344

    Article  ADS  Google Scholar 

  8. Slowey, A.J., Rytuba, J.J., Brown, G.E.: Speciation of mercury and mode of transport from placer gold mine tailings. Environ. Sci. Technol. 39(6), 1547–1554 (2005). https://doi.org/10.1021/es049113z

    Article  ADS  Google Scholar 

  9. Barron-Zambrano, J., Laborie, S., Vier, P., Rakib, M., Durand, G.: Mercury removal from aqueous solutions by complexation–ultrafiltration. Desalination. 144(1–3), 201–206 (2002). https://doi.org/10.1016/S0011-9164(02)00312-0

    Article  Google Scholar 

  10. Hernandez-Ramirez, O., Holmes, S.M.: Novel and modified materials for wastewater treatment applications. J. Mater. Chem. 18, 2751–2761 (2008). https://doi.org/10.1039/B716941H

    Article  Google Scholar 

  11. Lopes, C.B., Otero, M., Coimbra, J., Pereira, E., Rocha, J., Lin, Z., Duarte, A.: Removal of low concentration Hg2+ from natural waters by microporous and layered titanosilicates. Microporous Mesoporous Mater. 103(1–3), 325–332 (2007). https://doi.org/10.1016/j.micromeso.2007.02.025

    Article  Google Scholar 

  12. Lopes, C.B., Lito, P.F., Otero, M., Lin, Z., Rocha, J., Silva, C.M., Pereira, E., Duarte, A.C.: Mercury removal with titanosilicate ETS-4: batch experiments and modelling. Microporous Mesoporous Mater. 115(1–2), 98–105 (2008). https://doi.org/10.1016/j.micromeso.2007.10.055

    Article  Google Scholar 

  13. Ferreira, T.R., Lopes, C.B., Lito, P.F., Otero, M., Lin, Z., Rocha, J., Pereira, E., Silva, C.M., Duarte, A.: Cadmium(II) removal from aqueous solution using microporous titanosilicate ETS-4. Chem. Eng. J. 147(2–3), 173–179 (2009). https://doi.org/10.1016/j.cej.2008.06.032

    Article  Google Scholar 

  14. Theron, J., Walker, J.A., Cloete, T.E.: Nanotechnology and water treatment: applications and emerging opportunities. Crit. Rev. Microbiol. 34(1), 43–69 (2008). https://doi.org/10.1080/10408410701710442

    Article  Google Scholar 

  15. Miretzky, P., Cirelli, A.F.: Hg(II) removal from water by chitosan and chitosan derivatives: a review. J. Hazard. Mater. 167(1–3), 10–23 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.060

    Article  Google Scholar 

  16. Hakami, H., Zhang, Y., Banks, C.J.: Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Water Res. 46(12), 3913–3922 (2012). https://doi.org/10.1016/j.watres.2012.04.032

    Article  Google Scholar 

  17. Jackson, M.L.: Soil chemical analysis: advanced course, 3rd edition. Published by the author, Madison, Wisconsin, USA, p. In: 894 (1969)

    Google Scholar 

  18. Andrade, A.L., Souza, D.M., Pereira, M.C., Fabris, J.D., Domingues, R.Z.: Magnetic properties of nanoparticles obtained by different chemical routes. J. Nanosci. Nanotechnol. 9(3), 2081–2087 (2009). https://doi.org/10.1166/jnn.2009.423

    Article  Google Scholar 

  19. Andrade, A.L., Valente, M.A., Ferreira, J.M.F.F., Fabris, J.D.: Preparation of size-controlled nanoparticles of magnetite. J. Magn. Magn. Mater. 324(10), 1753–1757 (2012). https://doi.org/10.1016/j.jmmm.2011.12.033

    Article  ADS  Google Scholar 

  20. Andrade, A.L., Souza, D.M., Pereira, M.C., Fabris, J.D., Domingues, R.Z.: pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method. Quim Nova. 33(3), 524–527 (2010). https://doi.org/10.1590/S0100-40422010000300006

    Article  Google Scholar 

  21. Roque-Malherbe, R., Diaz-Aguila, C., Reguera-Ruiz, E., Fundora-Lliteras, J., López-Colado, L., Hernández-Vélez, M.: The state of iron in natural zeolites: a Mössbauer study. Zeolites. 10(7), 685–689 (1990). https://doi.org/10.1016/0144-2449(90)90080-B

    Article  Google Scholar 

  22. Mørup, S., Topsøe, H., Lipka, J.: Modified theory for Mössbauer spectra of superparamagnetic particles: application to Fe3O4. J. Phys. 37(C6, s12), C6-287–C6-290 (1976). https://doi.org/10.1051/jphyscol:1976658

    Article  Google Scholar 

  23. Meiek, W.M.: The crystal structure of mordenite (ptilolite). Z. Krist. 115(1–6), 439–450 (1961). https://doi.org/10.1524/zkri.1961.115.5-6.439

    Article  Google Scholar 

  24. Alberti, A., Davoli, P., Vezzalini, G.: The crystal structure refinement of a natural mordenite. Z. Krist. 175(1–4), 249–256 (1986). https://doi.org/10.1524/zkri.1986.175.14.249

    Article  Google Scholar 

Download references

Acknowledgments

JD Fabris and LCD Cavalcante are indebted to the Brazilian National Council for Scientific and Technological Development (CNPq), for the financial support under the grants # 304958/2017-4 and # 313431/2017-5, respectively. C. Pizarro thanks the following projects: Dicyt-USACH 021742PA, Fondo Fortalecimiento USA1799 and CEDENNAFB-0807 (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Domingos Fabris.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 16th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2018), 18-23 November 2018, Santiago de Chile, Chile Edited by Carmen Pizarro Arriagada

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, Â.L., Cavalcante, L.C.D., Fabris, J.D. et al. Zeolite-magnetite composites to remove Hg2+ from water. Hyperfine Interact 240, 83 (2019). https://doi.org/10.1007/s10751-019-1624-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1624-5

Keywords

Navigation