Skip to main content

Advertisement

Log in

Synthesis of polydiphenylamine nanostructures via microwave and ultra-sonication method for supercapacitor performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polydiphenylamine (PDPA) finds many applications as a conducting polymer due to its unique properties. Herein, we report a facile synthesis of PDPA nanoparticles (PDPA NPs) and PDPA nanorods (PDPA NRs) via microwave and ultrasonication approach towards energy storage application. The morphology of synthesized PDPA nanostructures was captured through scanning electron microscope. The crystallinity and molecular vibrational studies of synthesized PDPA nanostructures was analysed through X-ray diffraction studies and Fourier-Transform infrared spectroscopic technique. Also, the electrochemical properties of the fabricated PDPA nanoelectrodes were characterized through cyclic voltammetry, impedance and galvanostatic charge–discharge studies. The specific capacitance of PDPA-NPs and PDPA-NRs using cyclic voltammetry curves and galvanostatic charge–discharge studies was found to be 97 F/g and 156 F/g at 25 mV/s scan rate and 166 F/g and 194 F/g at 10 mA/g current density, respectively. PDPA-NPs and PDPA-NRs exhibit remarkable cyclic retention and stability over 1000 cycles (83% and 85%, respectively). The columbic efficiency of PDPA-NPs and PDPA-NRs was found to be 96% and 98%, respectively. These results indicate that the synthesized PDPA nanostructures are potentially worthy to be used as an electrode material and would be used in future energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M.A. Desai, A. Kulkarni, G. Gund, S.D. Sartale, SILAR grown K+ and Na+ ions preinserted MnO2 nanostructures for supercapacitor applications: a comparative study. Energy Fuels 35(5), 4577–4586 (2021). https://doi.org/10.1021/acs.energyfuels.0c04252

    Article  CAS  Google Scholar 

  2. G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2, 213–234 (2013). https://doi.org/10.1016/j.nanoen.2012.10.006

    Article  CAS  Google Scholar 

  3. G. Karunakaran, G. Maduraiveeran, E. Kolesnikov, S.K. Balasingam, D. Kuznetsov, M. Kundu, Hollow-structured Cu0.4Zn0.6Fe2O4 as a novel negative electrode material for high-performance lithium-ion batteries. J. Alloys Compd. 865, 158769 (2021). https://doi.org/10.1016/j.jallcom.2021.158769

    Article  CAS  Google Scholar 

  4. C. Alex, S.A. Bhat, N.S. John, C.V. Yelamaggad, Highly efficient and sustained electrochemical hydrogen evolution by embedded Pd-nanoparticles on a coordination polymer—reduced graphene oxide composite. ACS Appl. Energy Mater. 2(11), 8098–8106 (2019). https://doi.org/10.1021/acsaem.9b01579

    Article  CAS  Google Scholar 

  5. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 10, 4245–4270 (2004). https://doi.org/10.1021/cr020730k

    Article  CAS  Google Scholar 

  6. G. Karunakaran, G. Maduraiveeran, E. Kolesniko, S.K. Balasingam, L.D. Viktorovich, I. Ilinyh, M.V. Gorshenkov, M. Sasidharan, D. Kuznetsov, M. Kundu, Ascorbic acid-assisted eco-friendly synthesis of NiCo2O4 nanoparticles as an anode material for high-performance lithium-ion batteries. JOM 8, 1416–1422 (2018). https://doi.org/10.1007/s11837-018-2888-y

    Article  CAS  Google Scholar 

  7. Z. Zhou, X.F. Wu, Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: synthesis and electrochemical characterization. J. Power Sources 222, 410–416 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.004

    Article  CAS  Google Scholar 

  8. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 5, 1597–1614 (2014). https://doi.org/10.1039/C3EE44164D

    Article  Google Scholar 

  9. C. Bavatharani, E. Muthusankar, S.C. Lee, M.R. Johan, D. Ragupathy, Excellent cyclic retention and supercapacitive performance of electrochemically active nanocomposite electrode. Sens. Lett. 5, 395–400 (2020). https://doi.org/10.1166/sl.2020.4233

    Article  Google Scholar 

  10. A.K. Bakhshi, G. Bhalla, Electrically conducting polymers: materials of the twenty-first century (2004). http://nopr.niscair.res.in/handle/123456789/5475

  11. H. Khatoon, S. Iqbal, S. Ahmad, Influence of medium on structure, morphology and electrochemical properties of polydiphenylamine/vanadium pentoxide composite. SN Appl. Sci. (2019). https://doi.org/10.1007/s42452-019-0285-y

    Article  Google Scholar 

  12. S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 8, 783–810 (2009). https://doi.org/10.1016/j.progpolymsci.2009.04.003

    Article  CAS  Google Scholar 

  13. C. McKeever, S. Callan, S. Warren, E. Dempsey, Magnetic nanoparticle modified electrodes for voltammetric determination of propellant stabiliser diphenylamine. Talanta 2, 123039 (2022). https://doi.org/10.1016/j.talanta.2021.123039

    Article  CAS  Google Scholar 

  14. E. Grana, D. Katsigiannopoulos, A.E. Karantzalis, M. Baikousi, A. Avgeropoulos, Synthesis and molecular characterization of polythiophene and polystyrene copolymers: simultaneous preparation of diblock and miktoarm copolymers. Eur. Polym. J. 5, 1089–1097 (2013). https://doi.org/10.1016/j.eurpolymj.2013.01.011

    Article  CAS  Google Scholar 

  15. M.S. Lakshmi, S.M. Wabaidur, Z.A. Alothman, M.R. Johan, V.K. Ponnusamy, R. Dhanusuraman, Phosphotungstic acid-titania loaded polyaniline nanocomposite as efficient methanol electro-oxidation catalyst in fuel cells. Int. J. Energy Res. 45(6), 8243–8254 (2021). https://doi.org/10.1002/er.5950

    Article  CAS  Google Scholar 

  16. M.S. Lakshmi, E. Muthusankar, S.M. Wabaidur, Z.A. Alothman, V.K. Ponnusamy, D. Ragupathy, Development and characterization of polydiphenylamine/CuO nanohybrid electrode and its improved electrochemical properties. Sens. Lett. 18(1), 5–11 (2020). https://doi.org/10.1166/sl.2020.4198

    Article  Google Scholar 

  17. H. Shirakaw, The discovery of polyacetylene film—the dawning of an era of conducting polymers. Curr. Appl. Phys. 4–5, 281–286 (2001). https://doi.org/10.1016/S1567-1739(01)00052-9

    Article  Google Scholar 

  18. B. Chokkiah, M. Eswaran, S.M. Wabaidur, Z.A. Alothman, P.C. Tsai, V.K. Ponnusamy, R. Dhanusuraman, Novel PDPA-SiO2 nanosphericals network decorated graphene nanosheets composite coated FTO electrode for efficient electro-oxidation of methanol. Fuel 279, 118439 (2020). https://doi.org/10.1016/j.fuel.2020.118439

    Article  CAS  Google Scholar 

  19. Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 19, 2619–2623 (2006). https://doi.org/10.1002/adma.200600445

    Article  CAS  Google Scholar 

  20. C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 12, 2690–2695 (2006). https://doi.org/10.1021/nl061576a

    Article  CAS  Google Scholar 

  21. V. Rajendran, A. Gopalan, T. Vasudevan, T.C. Wen, Electrochemical copolymerization of diphenylamine with aniline by a pulse potentiostatic method. J. Electrochem. Soc. 8, 3014 (2000). https://doi.org/10.1149/1.1393641

    Article  Google Scholar 

  22. M.H. Kim, D.H. Bae, H.J. Choi, Y. Seo, Synthesis of semiconducting poly(diphenylamine) particles and analysis of their electrorheological properties. Polymer (2017). https://doi.org/10.1016/j.polymer.2017.05.017

    Article  Google Scholar 

  23. S.L. Madaswamy, S.M. Wabaidur, M.R. Khan, S.C. Lee, R. Dhanusuraman, Polyaniline-graphitic carbon nitride based nano-electrocatalyst for fuel cell application: a green approach with synergistic enhanced behaviour. Mac. Res. 29(6), 411–417 (2021). https://doi.org/10.1007/s13233-021-9044-1

    Article  CAS  Google Scholar 

  24. S.L. Madaswamy, N.V. Keertheeswari, A.A. Alothman, M. mana AL-Anazy, K.N. Alqahtani, S.M. Waba, Fabrication of nanocomposite networks using Pd nanoparticles/polydiphenylamine anchored on the surface of reduced graphene oxide: an efficient anode electrocatalyst for oxidation of methanol. Ind. Eng. Polym. Res. 5, 18–25 (2021). https://doi.org/10.1016/j.aiepr.2021.08.001

    Article  CAS  Google Scholar 

  25. M. Murugan, V.K. Kokate, Microwave absorbing polymer composites, in International Conference on Emerging Trends in Electronic and Photonic Devices & Systems, ELECTRO. (2009), pp. 336–339. https://doi.org/10.1109/ELECTRO.2009.5441100

  26. K.P. Lee, A.I. Gopalan, S.H. Lee, A.M. Showkat, Y.C. Nho, Synergic influence of a surfactant and ultrasonication on the preparation of soluble, conducting polydiphenylamine/silica-nanoparticle composites. J. Appl. Polym. Sci. 4, 3912–3918 (2006). https://doi.org/10.1002/app.24178

    Article  CAS  Google Scholar 

  27. L. Xiaoqin, L. Yang, Y. Lei, L. Gu, D. Xiao, Microwave-assisted chemical-vapor-induced in situ polymerization of polyaniline nanofibers on graphite electrode for high-performance supercapacitor. ACS Appl. Mater. Interfaces 22, 19978–19989 (2014). https://doi.org/10.1021/am505533c

    Article  CAS  Google Scholar 

  28. Y.Z. Dong, H.J. Choi, Electrorheological characteristics of poly(diphenylamine)/magnetite composite-based suspension. Materials (2019). https://doi.org/10.3390/ma12182911

    Article  Google Scholar 

  29. C.T. López, J.P. Bueno, I.Z. Torres, M.L. Mendoza-López, J.U. Álvarez, A.H. Macías, Electrophoretical deposition of nanotube TiO2 conglomerates detached during Ti anodizing used for decomposing methyl orange in water, in Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering. (IGI Global, 2015), pp. 477–495. https://doi.org/10.4018/978-1-4666-6363-3.ch022

  30. R. Shoukat, M.I. Khan, Growth of nanotubes using IC-PECVD as benzene carbon carrier. Microsyst. Technol. 12, 5447–5453 (2017). https://doi.org/10.1007/s00542-017-3353-5

    Article  CAS  Google Scholar 

  31. Y.T. Shih, K.Y. Lee, Y.S. Huang, Characterization of iridium dioxide–carbon nanotube nanocomposites grown onto graphene for supercapacitor. J. Alloys Compd. 619, 131–7 (2015). https://doi.org/10.1016/j.jallcom.2014.08.210

    Article  CAS  Google Scholar 

  32. H.H. Shi, S. Jang, A. Reza-Ugalde, H.E. Naguib, Hierarchically structured nitrogen-doped multilayer reduced graphene oxide for flexible intercalated supercapacitor electrodes. ACS Appl. Energy Mater. 3(1), 987–97 (2020). https://doi.org/10.1021/acsaem.9b02038

    Article  CAS  Google Scholar 

  33. D. Ragupathy, A.I. Gopalan, K.P. Lee, K.M. Manesh, Electro-assisted fabrication of layer-by-layer assembled poly(2,5-dimethoxyaniline)/phosphotungstic acid modified electrode and electrocatalytic oxidation of ascorbic acid. Electrochem. Commun. 4, 527–530 (2008). https://doi.org/10.1016/j.elecom.2008.01.025

    Article  CAS  Google Scholar 

  34. S. Ramalingam, Synthesis and electrochemical characterisation of novel hybrid copper/poly(diphenylamine) (PDPA) nanocomposites. Int. J. Recent Technol. Eng. (2019). https://doi.org/10.35940/ijrte.D1156.1284S219

    Article  Google Scholar 

  35. E. Muthusankar, D. Ragupathy, C. Bavatharani, T. Pei-Chien, W. Saikh Mohammad, A. Zeid Abdullah, P. Vinoth Kumar, Poly(diphenylamine) and its nanohybrids for chemicals and biomolecules analysis: a review. Curr. Anal. Chem. (2021). https://doi.org/10.2174/1573411017999201215164018

    Article  Google Scholar 

  36. M.S. Lakshmi, S.M. Wabaidur, Z.A. Alothman, D. Ragupathy, Novel 1D polyaniline nanorods for efficient electrochemical supercapacitors: a facile and green approach. Synth. Met. 1, 116591 (2020). https://doi.org/10.1016/j.synthmet.2020.116591

    Article  CAS  Google Scholar 

  37. N.K. Rawat, A. Ghosal, S. Ahmad, Influence of microwave irradiation on various properties of nanopolythiophene and their anticorrosive nanocomposite coatings. RSC Adv. 4(92), 50594–50605 (2014). https://doi.org/10.1039/C4RA06679K

    Article  CAS  Google Scholar 

  38. M.R. Gizdavic-Nikolaidis, D.R. Stanisavljev, A.J. Easteal, Z.D. Zujovic, Microwave-assisted synthesis of functionalized polyaniline nanostructures with advanced antioxidant properties. J. Phys. Chem. C 114(44), 18790–6 (2010). https://doi.org/10.1021/jp106213m

    Article  CAS  Google Scholar 

  39. B.G. Raj, J. Acharya, M.K. Seo, M.S. Khil, H.Y. Kim, B.S. Kim, One-pot sonochemical synthesis of hierarchical MnWO4 microflowers as effective electrodes in neutral electrolyte for high performance asymmetric supercapacitors. Int. J. Hydrogen Energy 44(21), 10838–10851 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.035

    Article  CAS  Google Scholar 

  40. N. Bundaleska, J. Henriques, M. Abrashev, A.B. do Rego, A.M. Ferraria, A. Almeida, F.M. Dias, E. Valcheva, B. Arnaudov, K.K. Upadhyay, M.F. Montemor, Large-scale synthesis of free-standing N-doped graphene using microwave plasma. Sci. Rep. 8(1), 1–1 (2018). https://doi.org/10.1038/s41598-018-30870-3

    Article  CAS  Google Scholar 

  41. S.P. Palaniappan, P. Manisankar, Mechanochemical preparation of polydiphenylamine and its electrochemical performance in hybrid supercapacitors. Electrochim. Acta 56(17), 6123–6130 (2011). https://doi.org/10.1016/j.electacta.2011.04.066

    Article  CAS  Google Scholar 

  42. C. Yan, M. Jin, X. Pan, L. Ma, X. Ma, A flexible polyelectrolyte-based gel polymer electrolyte for high-performance all-solid-state supercapacitor application. RSC Adv. 10(16), 9299–9308 (2020). https://doi.org/10.1039/C9RA10701K

    Article  CAS  Google Scholar 

  43. J. Xu, K. Wang, S.Z. Zu, B.H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9), 5019–26 (2010). https://doi.org/10.1021/nn1006539

    Article  CAS  Google Scholar 

  44. D.S. Dhawale, A. Vinu, C.D. Lokhande, Stable nanostructured polyaniline electrode for supercapacitor application. Electrochim. Acta (2011). https://doi.org/10.1016/j.electacta.2011.08.042

    Article  Google Scholar 

  45. S. Pang, W. Chen, Z. Yang, Z. Liu, X. Fan, D. Fang, Facile synthesis of polyaniline nanotubes with square capillary using urea as template. Polymers (2017). https://doi.org/10.3390/polym9100510

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Researchers Supporting Project No. (RSP-2021/267), King Saud University, Riyadh, Saudi Arabia.

Funding

This work was funded by the Researchers Supporting Project No. (RSP-2021/267), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

NVK—Research work done and wrote the paper. SLM, BC—Conceived and designed the analysis. MDA, SMW—Review the paper and Contributed Tools. SCL—Review the paper. RD—Conceptualization, wrote and reviewed the paper, data analysis.

Corresponding author

Correspondence to Ragupathy Dhanusuraman.

Ethics declarations

Conflict of interest

The author declares no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veni Keertheeswari, N., Madaswamy, S.L., Chokkiah, B. et al. Synthesis of polydiphenylamine nanostructures via microwave and ultra-sonication method for supercapacitor performance. J Mater Sci: Mater Electron 33, 23236–23249 (2022). https://doi.org/10.1007/s10854-022-09088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09088-7

Navigation