Skip to main content
Log in

Micro flowers composed of nanosheets Ag salts composite as n-p type semiconductor: an efficient photocatalyst under visible irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We designed a new photocatalyst on the basis of a layered double hydroxide (MgAl-LDH), silver sulfide (Ag2S), and AgPW12O40 (AgPW) for dye removal. Several characterization methods were used to determine the structure of the catalyst, such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), diffuse reflectance spectrophotometer (DRS), Brunauer–Emmett–Teller (BET), and photoluminescence (PL) spectroscopy. Seven catalysts with different components composition were produced. Not much change in the Ag2S weight percentage was more effective than AgPW. The formation of MgAl-LDH/Ag2S/AgPW heterojunction by the mass ratio of 4:1.2:1 along with its acceptable reusability enhanced the photocatalytic activity in photodegradation under visible light as compared to the bare MgAl-LDH, Ag2S, and AgPW. According to the optimization process, dye concentration of 5 mg/L, MgAl-LDH/Ag2S/AgPW photocatalyst with mass ratio of 4:1.2:1 (Cat IV), catalyst loading of 2 g/L, initial pH of 6, and reaction time of 90 min were selected as optimum process conditions. By these conditions, the optimum degradation of Rh.B under visible light was 99.6%. Mechanism investigation showed that 1O2 play the main role in photocatalytic process. Cat IV as the best composite showed prolonged life-time based on the Bode plot. Also based on the Nyquist and Tauc plots, this composite act as a superconductor. Flat band energies and donor densities of nanocomposites were evaluated from Mott–Schottky plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data sets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Wu, J. Cao, Zh. Wu, J. Zhang, Z. Yang, The mechanism of radioactive strontium removal from simulated radioactive wastewater via a coprecipitation microfiltration process. J. Radioanal. Nucl. Chem. 314(3), 1973–1981 (2017). https://doi.org/10.1007/s10967-017-5570-x

    Article  CAS  Google Scholar 

  2. M. Farsi, A. Nezamzadeh-Ejhieh, A coupled cobalt(II) oxide-silver tungstate nano-photocatalyst: moderate characterization and evaluation of the photocatalysis kinetics towards methylene blue in aqueous solution. Polyhedron 219, 115823 (2022). https://doi.org/10.1016/j.poly.2022.115823

    Article  CAS  Google Scholar 

  3. T. Tran, K.F. Chiu, C.Y. Lin, H.J. Leu, Electrochemical treatment of wastewater: selectivity of the heavy metals removal process. Int. J. Hydrog. Energy 42(45), 27741–27748 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.156

    Article  CAS  Google Scholar 

  4. D. Han, X. Yu, Q. Chai, N. Ayres, A.J. Steckl, Stimuli-responsive self-immolative polymer nanofiber membranes formed by coaxial electrospinning. ACS Appl. Mater. Interfaces 9(13), 11858–11865 (2017). https://doi.org/10.1021/acsami.6b16501

    Article  CAS  Google Scholar 

  5. Z. He, M.S. Siddigue, H. Yang, Y. Xia, J. Su, B. Tang, L. Wang, L. Kang, Z. Huang, Novel Z-scheme In2S3/Bi2WO6 core-shell heterojunctions with synergistic enhanced photocatalytic degradation of tetracycline hydrochloride. J. Clean. Product. 339, 130634 (2022). https://doi.org/10.1016/j.jclepro.2022.130634

    Article  CAS  Google Scholar 

  6. E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zangeneh, Surfactant effect on photocatalytic activity of Ag-TiO2/PW nanocomposite in DR16 degradation: characterization of nanocomposite and RSM process optimization. Mater. Sci. Semicond. Process. 83, 115–124 (2018). https://doi.org/10.1016/j.mssp.2018.04.021

    Article  CAS  Google Scholar 

  7. S. Mesdaghi, S. Ghezelbash, M. Yousefi, Structural, magnetic, and photocatalytic investigation of Hexaferrites/PANI nanocomposites’. Mater. Chem. Phys. 2022, 125866 (2022). https://doi.org/10.1016/j.matchemphys.2022.125866

    Article  CAS  Google Scholar 

  8. K.R. Reddy, M. Hassan, V.G. Gomes, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl. Catal. A 489, 1–16 (2015). https://doi.org/10.1016/j.apcata.2014.10.001

    Article  CAS  Google Scholar 

  9. R. Chong, X. Cheng, B. Wang, D. Li, Zh. Chang, L. Zhang, Enhanced photocatalytic activity of Ag3PO4 for oxygen evolution and methylene blue degeneration: effect of calcination temperature. Int. J. Hydrog. Energy 41(4), 2575–2582 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.061

    Article  CAS  Google Scholar 

  10. Y. Liu, J. Wang, H. Lu, M. Li, P. Chen, L. Fang, Facile synthesis of visible light-driven Ag3PO4 nanocrystals base on IP6 micelles. Catal. Commun. 55, 65–69 (2014). https://doi.org/10.1016/j.catcom.2014.06.015

    Article  CAS  Google Scholar 

  11. Z. He, H. Yang, J. Su, Y. Xia, X. Fu, L. Wang, L. Kang, Construction of multifunctional dual Z-scheme composites with enhanced photocatalytic activities for degradation of ciprofloxacin. Fule 294, 120399 (2021). https://doi.org/10.1016/j.fuel.2021.120399

    Article  CAS  Google Scholar 

  12. H. Lu, J. Wang, Zh. Du, Y. Liu, M. Li, P. Chen, L. Zhang, In-situ anion-exchange synthesis AgCl/AgVO3 hybrid nanoribbons with highly photocatalytic activity. Mater. Lett. 157, 231–234 (2015). https://doi.org/10.1016/j.matlet.2015.05.135

    Article  CAS  Google Scholar 

  13. D. Xu, B. Cheng, J. Zhang, W. Wang, J. Yu, W. Ho, Photocatalytic activity of Ag2MO4 (M= Cr, Mo, W) photocatalysts. J. Mater. Chem. A 3(40), 20153–20166 (2015). https://doi.org/10.1039/c5ta05248c

    Article  CAS  Google Scholar 

  14. Sh. Song, B. Cheng, N. Wu, A. Meng, Sh. Cao, J. Yu, Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3-rGO for photocatalytic elimination of pollutants. Appl. Catal. B 181, 71–78 (2016). https://doi.org/10.1016/j.apcatb.2015.07.034

    Article  CAS  Google Scholar 

  15. Z. He, J. Su, R. Chen, B. Tang, Fabrication of novel p-Ag2O/n-PbBiO2Br heterojunction photocatalysts with enhanced photocatalytic performance under visible-light irradiation”. J. Mater. Sci. 30, 20870–20880 (2019). https://doi.org/10.1007/s10854-019-02454-y

    Article  CAS  Google Scholar 

  16. Y. Liu, P. Geng, J. Wang, Zh. Yang, H. Lu, J. Hai, Zh. Lu, D. Fan, M. Li, In-situ ion-exchange synthesis Ag2S modified SnS2 nanosheets toward highly photocurrent response and photocatalytic activity. J. Colloid Interface Sci. 512, 784–791 (2018). https://doi.org/10.1016/j.jcis.2017.10.112

    Article  CAS  Google Scholar 

  17. Y. Lei, Sh. Song, W. Fan, Y. Xing, H. Zhang, Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property. J. Phys. Chem. C 113(4), 1280–1285 (2009). https://doi.org/10.1021/jp8079974

    Article  CAS  Google Scholar 

  18. J. Zai, K. Wang, Y. Su, X. Qian, J. Chen, High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. J. Power Sources 196(7), 3650–3654 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.057

    Article  CAS  Google Scholar 

  19. Y. Du, Z. Yin, X. Rui, Z. Zeng, X.J. Wu, J. Liu, Y. Zhu, A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries. Nanoscale 5(4), 1456–1459 (2013). https://doi.org/10.1039/C2NR33458E

    Article  CAS  Google Scholar 

  20. Y. Bai, X. Zong, H. Yu, X.G. Chen, L. Wang, Scalable low-cost SnS2 nanosheets as counter electrode building blocks for dye-sensitized solar cells. Chemistry 20(28), 8670–8676 (2014). https://doi.org/10.1002/chem.201402657

    Article  CAS  Google Scholar 

  21. Ch. Prasad, H. Tang, Q.Q. Liu, S. Zulfiqar, S. Shah, I. Bahadur, An overview of semiconductors/layered double hydroxides composites: Properties, synthesis, photocatalytic and photoelectrochemical applications. J. Mol. Liq. 289, 111114 (2019). https://doi.org/10.1016/j.molliq.2019.111114

    Article  CAS  Google Scholar 

  22. Ch. Zhang, M. Zhao, H. Zou, X. Zhang, R. Sheng, Y. Zhang, B. Zhang, Ch. Li, Y. Qi, An enhanced antibacterial nanoflowers AgPW@ PDA@ Nisin constructed from polyoxometalate and nisin. J. Inorg. Biochem. 212, 111212 (2020). https://doi.org/10.1016/j.jinorgbio.2020.111212

    Article  CAS  Google Scholar 

  23. S.Y. Lai, K. Hoong Ng, Ch.K. Cheng, H. Nur, M. Nurhadi, M. Arumugam, Photocatalytic remediation of organic waste over Keggin-based polyoxometalate materials: a Review. Chemosphere 263, 128244 (2021). https://doi.org/10.1016/j.chemosphere.2020.128244

    Article  CAS  Google Scholar 

  24. E. Rafiee, N. Pami, A.A. Zinatizadeh, S. Eavani, A new polyoxometalate-TiO2 nanocomposite for efficient visible photodegradation of dye from wastewater, liquorice and yeast extract: photoelectrochemical, electrochemical, and physical investigations. J. Photochem. Photobiol. A 386, 112145 (2020). https://doi.org/10.1016/j.jphotochem.2019.112145

    Article  CAS  Google Scholar 

  25. J. Gurgul, M. Zimowska, D. Mucha, R.P. Socha, L. Matachowski, The influence of surface composition of Ag3PW12O40 and Ag3PMo12O40 salts on their catalytic activity in dehydration of ethanol. J. Mol. Catal. A 351, 1–10 (2011). https://doi.org/10.1016/j.molcata.2011.09.016

    Article  CAS  Google Scholar 

  26. E. Rafiee, M. Kahrizi, Collaboration of Ni, polyoxometalates and layered double hydroxides: synthesis, characterization, electrochemical and mechanism investigations as nano-catalyst in the Heck coupling reaction. Res. Chem. Intermed. 44(12), 7289–7309 (2018). https://doi.org/10.1007/s11164-018-3557-z

    Article  CAS  Google Scholar 

  27. R. Extremera, I. Pavlovic, M.R. Pérez, C. Barriga, Removal of acid orange 10 by calcined Mg/Al layered double hydroxides from water and recovery of the adsorbed dye. Chem. Eng. J. 213, 392–400 (2012). https://doi.org/10.1016/j.cej.2012.10.042

    Article  CAS  Google Scholar 

  28. R.X. Xu, X.Y. Yu, Ch. Gao, J.H. Liu, R.G. Compton, X.J. Huang, Enhancing selectivity in stripping voltammetry by different adsorption behaviors: the use of nanostructured Mg–Al-layered double hydroxides to detect Cd (II). Analyst 138(6), 1812–1818 (2013). https://doi.org/10.1039/C3AN36271J

    Article  CAS  Google Scholar 

  29. Y. Ao, D. Wang, P. Wang, Ch. Wang, J. Hou, J. Qian, Enhanced photocatalytic properties of the 3D flower-like Mg-Al layered double hydroxides decorated with Ag2CO3 under visible light illumination. Mater. Res. Bull. 80, 23–29 (2016). https://doi.org/10.1016/j.materresbull.2016.03.033

    Article  CAS  Google Scholar 

  30. X.Y. Yu, T. Luo, Y. Jia, R.X. Xu, Ch. Gao, Y.X. Zhang, J.H. Liu, X.J. Huang, Three-dimensional hierarchical flower-like Mg–Al-layered double hydroxides: highly efficient adsorbents for As (V) and Cr (VI) removal. Nanoscale 4(11), 3466–3474 (2012). https://doi.org/10.1039/C2NR30457K

    Article  CAS  Google Scholar 

  31. A. Morais, W.V. Oliveira, V.V. de Oliveira, L.M.C. Honorio, F.P. Araujo, R.D.S. Bezerra, P.B.A. Fechine, B.C. Viana, M.B. Furtini, E.C. Silva-Filho, J.A. Osajima, Semiconductor supported by palygorskite and layered double hydroxides clays to dye discoloration in solution by a photocatalytic process. J. Environ. Chem. Eng. 7(6), 103431 (2019). https://doi.org/10.1016/j.jece.2019.103431

    Article  CAS  Google Scholar 

  32. L. Yuan, Sh. Lu, F. Yang, Y. Wang, Y. Jia, M.S. Kadhim, Y. Yu, Y. Zhang, Y. Zhao, A facile room-temperature synthesis of three-dimensional coral-like Ag2S nanostructure with enhanced photocatalytic activity. J. Mater. Sci. 54(4), 3174–3186 (2019). https://doi.org/10.1007/s10853-018-3051-4

    Article  CAS  Google Scholar 

  33. W. Shume, M.H.C. Murthy, E.A. Zereffa, A review on synthesis and characterization of Ag2O nanoparticles for photocatalytic applications. J. Chem. (2020). https://doi.org/10.1155/2020/5039479

    Article  Google Scholar 

  34. Sh. Liu, J. Yu, W. Wang, Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2. Phys. Chem. Chem. Phys. 12(38), 12308–12315 (2010). https://doi.org/10.1039/C0CP00036A

    Article  CAS  Google Scholar 

  35. C. Novillo, D. Guaya, A.A.P. Avendaño, Ch. Armijos, J.L. Cortina, I. Cota, Evaluation of phosphate removal capacity of Mg/Al layered double hydroxides from aqueous solutions. Fuel 138, 72–79 (2014). https://doi.org/10.1016/j.fuel.2014.07.010

    Article  CAS  Google Scholar 

  36. D.Y. Wang, A. Leuteritz, B. Kutlu, M. Auf der Landwehr, D. Jehnichen, U. Wagenknecht, G. Heinrich, Preparation and investigation of the combustion behavior of polypropylene/organomodified MgAl-LDH micro-nanocomposite. J. Alloys Compd. 509(8), 3497–3501 (2011). https://doi.org/10.1016/j.jallcom.2010.12.138

    Article  CAS  Google Scholar 

  37. F. Yang, Sh. Sun, X. Chen, Y. Chang, F. Zha, Z. Lei, Mg–Al layered double hydroxides modified clay adsorbents for efficient removal of Pb2+, Cu2+ and Ni2+ from water. Appl. Clay Sci. 123, 134–140 (2016). https://doi.org/10.1016/j.clay.2016.01.026

    Article  CAS  Google Scholar 

  38. Sh. Chen, Y. Hu, S. Meng, X. Fu, Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl. Catal. B 150, 564–573 (2014). https://doi.org/10.1016/j.apcatb.2013.12.053

    Article  CAS  Google Scholar 

  39. H. Ramezanalizadeh, E. Rafiee, Design, fabrication, electro-and photoelectrochemical investigations of novel CoTiO3/CuBi2O4 heterojunction semiconductor: an efficient photocatalyst for the degradation of DR16 dye. Mater. Sci. Semicond. Process. 113, 105055 (2020). https://doi.org/10.1016/j.mssp.2020.105055

    Article  CAS  Google Scholar 

  40. M. Ahmadi, M.S.S. Dorraji, I. Hajimiri, M.H. Rasoulifard, The main role of CuO loading against electron-hole recombination of SrTiO3: Improvement and investigation of photocatalytic activity, modeling and optimization by response surface methodology. J. Photochem. Photobiol. A 404, 112886 (2021). https://doi.org/10.1016/j.jphotochem.2020.112886

    Article  CAS  Google Scholar 

  41. S. Nayak, K.M. Parida, Nanostructured CeO2/MgAl-LDH composite for visible light induced water reduction reaction. Int. J. Hydrog. Energy 41(46), 21166–21180 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.062

    Article  CAS  Google Scholar 

  42. M. Mahmoodi, E. Rafiee, S. Eavani, Introducing of a novel polyoxometalate-based organic–inorganic hybrid: insights into electochemical property-photoactivity relationship. J. Mater. Sci. 32, 1121–1138 (2021). https://doi.org/10.1007/s10854-020-04886-3

    Article  CAS  Google Scholar 

  43. Y. Yu, Q. Wu, Y. Guo, Ch. Hu, E. Wang, Efficient degradation of dye pollutants on nanoporous polyoxotungstate–anatase composite under visible-light irradiation. J. Mol. Catal. A 225(2), 203–212 (2005). https://doi.org/10.1016/j.molcata.2004.08.031

    Article  CAS  Google Scholar 

  44. Y.K. Huang, Z.Y. Yang, S.J. Yang, Y.L. Xu, Photodegradation of dye pollutants catalyzed by H3PW12O40/SiO2 treated with H2O2 under simulated solar light irradiation. J. Adv. Nanomater. 2(3), 146152 (2017)

    Article  Google Scholar 

  45. J. Sobia, J. Iqbal, A. Arshad, M.S. Awan, M.F. Warsi, (In1-xFex)2O3 nanostructures for photocatalytic degradation of various dyes. Mater. Chem. Phys. 243, 122516 (2020). https://doi.org/10.1016/j.matchemphys.2019.122516

    Article  CAS  Google Scholar 

  46. Zh. Muxi, X. Sun, Ch. Wang, Y. Wang, Zh. Tan, J. Li, B. Xi, Photocatalytic degradation of rhodamine B using Bi4O5Br2-doped ZSM-5. Mater. Chem. Phys. 278, 125697 (2022). https://doi.org/10.1016/j.matchemphys.2022.125697

    Article  CAS  Google Scholar 

  47. R. Kumar, A. Umar, R. Kumar, M.S. Chauhan, G. Kumar, S. Chauhan, Spindle-like Co3O4-ZnO nanocomposites scaffold for hydrazine sensing and photocatalytic degradation of rhodamine B dye. Eng. Sci. 16, 288–300 (2021). https://doi.org/10.30919/es8d548

    Article  CAS  Google Scholar 

  48. M. Mahmoodi, E. Rafiee, S. Eavani, Photocatalytic removal of toxic dyes, liquorice and tetracycline wastewaters by a mesoporous photocatalyst under irradiation of different lamps and sunlight”. J. Environ. Manag. 311, 115023 (2022)

    Article  Google Scholar 

  49. M. Mahmoodi, E. Rafiee, S. Eavani, Introducing of a novel polyoxometalate-based organic–inorganic hybrid: Insights into electochemical propertyphotoactivity relationship. J. Mater. Sci. 32, 11211138 (2021). https://doi.org/10.1007/s10854-020-04886-3

    Article  CAS  Google Scholar 

  50. R. Saher, M.A. Hanif, A. Mansha, H.M.A. Javed, M. Zahid, N. Nadeem, G. Mustafa, A. Shaheen, O. Riaz, Sunlight-driven photocatalytic degradation of rhodamine B dye by Ag/FeWO4/g-C3N4 composites. Int. J. Environ. Sci. Technol. 18(4), 927–938 (2021). https://doi.org/10.1007/s13762-020-02888-6

    Article  CAS  Google Scholar 

  51. G. Nan, H. Liu, Y. Fu, J. Hu, Preparation of Fe2O3 nanoparticles doped with In2O3 and photocatalytic degradation property for rhodamine B. Optik 201, 163537 (2020). https://doi.org/10.1016/j.ijleo.2019.163537

    Article  CAS  Google Scholar 

  52. C. Magdalane, K. Maria, J. Kaviyarasu, J. Vijaya, B. Siddhardha, B. Jeyaraj, J. Kennedy, M. Maaza, Evaluation on the heterostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/Vis light induced photocatalytic degradation of Rhodamine-B dye for textile engineering application. J. Alloys Compds. 727, 13241337 (2017). https://doi.org/10.1016/j.jallcom.2017.08.209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Razi University Research Council for partial support of this work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Supervision; Writing-Reviewing and Editing were performed by Dr. ER. The first draft of the manuscript was written by Dr. MK. Also investigating and formal analysis were performed by Dr. MK. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to E. Rafiee.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 570 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, M., Rafiee, E. Micro flowers composed of nanosheets Ag salts composite as n-p type semiconductor: an efficient photocatalyst under visible irradiation. J Mater Sci: Mater Electron 33, 23325–23340 (2022). https://doi.org/10.1007/s10854-022-09081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09081-0

Navigation