Skip to main content
Log in

Influence of precursors and formation of heterostructures towards the enhanced photocatalytic activity of ZnO thin films deposited by spray pyrolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO thin films were deposited by spray pyrolysis using different precursors. The effect of change in precursor on the structural, morphological, optical and photocatalytic properties were studied. In order to improve the visible light photocatalytic activity of sprayed ZnO film SnSe, CdSe thin films were deposited on ZnO by vacuum evaporation. In order to investigate the characteristics of the film, X-ray diffraction, scanning electron microscopy and UV–Vis spectroscopy are used. Photoluminescence spectra result confirmed a change in recombination of charge carriers. Further minimization of recombination was achieved by the formation of heterostructures. The photocatalytic degradation of MB, MO, RhB and phenol were studied under visible irradiation at room temperature. The photodegradation of MB and phenol was determined to be 75% and 55% for 180 min of irradiation with ZnO thin film as a photocatalyst, whereas an improved efficiency of 87% and 74% was observed for the heterostructure film ZA/SnSe during the same irradiation time, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data are available on reasonable request from the corresponding author.

References

  1. N. Nalajala, K.K. Patra, P.A. Bharad, C.S. Gopinath, RSC Adv. 9, 6094 (2019)

    Article  CAS  Google Scholar 

  2. M. Irani, T. Mohammadi, S. Mohebbi, J. Mex. Chem. Soc. 60, 218 (2016)

    CAS  Google Scholar 

  3. H. Leelavathi, N. Abirami, R. Muralidharan, H.P. Kavitha, S. Tamizharasan, S. Sankeetha, R. Arulmozhi, RSC Adv. 11, 26800 (2021)

    Article  CAS  Google Scholar 

  4. M.R. Abukhadra, M. Mostafa, A.M. El-Sherbeeny, M.A. El-Meligy, A. Nadeem, ACS Omega 6, 845 (2021)

    Article  CAS  Google Scholar 

  5. A.M. Rabie, M.R. Abukhadra, A.M. Rady, M.A. Betiha, J.J. Shim, Res. Chem. Intermed. 46, 1955 (2020)

    Article  CAS  Google Scholar 

  6. E.M.M. Putri, M. Rachimoellah, C.S. Rahendaputri, Y. Adisti, Y. Zetra, in AIP Conf. Proc. 2049(1), 020092 (2018)

    Article  Google Scholar 

  7. T. Varadavenkatesan, E. Lyubchik, S. Pai, A. Pugazhendhi, J. Photochem. Photobiol. B 199, 111621 (2019)

    Article  CAS  Google Scholar 

  8. P. Basnet, T.I. Chanu, D. Samanta, S. Chatterjee, J. Mukherjee, AIP Conf. Proc. 2115, 10 (2019)

    Google Scholar 

  9. K. Byrappa, A.K. Subramani, S. Ananda, K.M. Lokanatha Rai, R. Dinesh, Y.M. Yoshimura, Bull. Mater. Sci. 29, 433–438 (2006)

    Article  CAS  Google Scholar 

  10. H. Dewidar, S.A. Nosier, J. Chem. Health Saf. 25, 2–11 (2017)

    Article  Google Scholar 

  11. H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S.D. Lambert, M. Crine, B. Heinrichs, Alex. Eng. J. 52, 517 (2013)

    Article  Google Scholar 

  12. L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, Curr. Pollut. Rep. 2, 157 (2016)

    Article  CAS  Google Scholar 

  13. H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films 236, 27–31 (1993)

    Article  CAS  Google Scholar 

  14. R. Vittal, K.C. Ho, Renew. Sustain. Energy Rev. 70, 920 (2017)

    Article  CAS  Google Scholar 

  15. R.S. Pedanekar, S.K. Shaikh, K.Y. Rajpure, Curr. Appl. Phys. (2020). https://doi.org/10.1016/j.cap.2020.04.006

    Article  Google Scholar 

  16. H. Li, S. Yu, J. Hu, E. Liu, Thin Solid Films 666, 100 (2018)

    Article  CAS  Google Scholar 

  17. P. Semeraro, S. Bettini, S. Sawalha, S. Pal, A. Licciulli, F. C, N. Lovergine, L. Valli, G. Giancane, J. Nanomater. (Basel). 10(8), 1458 (2020)

    Article  CAS  Google Scholar 

  18. C.V. Reddy, B. Babu, I.N. Reddy, J. Shim, Ceram. Int. 44, 6940 (2018)

    Article  CAS  Google Scholar 

  19. P.K. Aspoukeh, A.A. Barzinjy, S.M. Hamad, Int. Nano Lett. (2021). https://doi.org/10.1007/s40089-021-00349-7

    Article  Google Scholar 

  20. X. Zhao, K. Nagashima, G. Zhang, T. Hosomi, H. Yoshida, Y. Akihiro, M. Kanai, W. Mizukami, Z. Zhu, T. Takahashi, M. Suzuki, B. Samransuksamer, G. Meng, T. Yasui, Y. Aoki, Y. Baba, T. Yanagida, Nano Lett. 20, 599 (2019)

    Article  Google Scholar 

  21. F. Cao, Z. Pan, X. Ji, New J. Chem. 43, 11342 (2019)

    Article  CAS  Google Scholar 

  22. A. Tripathy, P. Wasik, S. Sreedharan, D. Nandi, O. Bikondoa, B. Su, P. Sen, W.H. Briscoe, Colloids Interfaces 2, 1 (2018)

    Article  Google Scholar 

  23. A.R. Nimbalkar, M.G. Patil, Physica B 527, 7 (2017)

    Article  CAS  Google Scholar 

  24. M.I. Khan, K.A. Bhatti, R. Qindeel, N. Alonizan, H.S. Althobaiti, Results Phys. 7, 651 (2017)

    Article  Google Scholar 

  25. R. Romero, D. Leinen, E.A. Dalchiele, J.R. Ramos-Barrado, F. Martín, Thin Solid Films 515, 1942 (2006)

    Article  CAS  Google Scholar 

  26. Z. Ben Ayadi, H. Mahdhi, K. Djessas, J.L. Gauffier, L. El Mir, S. Alaya, Thin Solid Films 553, 123 (2014)

    Article  CAS  Google Scholar 

  27. N. Yudasari, D.S. Kennedy, M.M. Suliyanti, J. Phys.: Conf. Ser. 1191, 012009 (2019)

    CAS  Google Scholar 

  28. J.K. Saha, R.N. Bukke, N.N. Mude, J. Jin, Sci. Rep. 10, 1 (2020)

    Article  Google Scholar 

  29. M.P.F. De Godoy, J. Mater. Sci.: Mater. Electron. 31, 17269 (2020)

    Google Scholar 

  30. T. Tharsika, M. Thanihaichelvan, A.S.M.A. Haseeb, S.A. Akbar, Front. Mater. 6, 1 (2019)

    Article  Google Scholar 

  31. A. Ramirez-Canon, M. Medina-Llamas, M. Vezzoli, D. Mattia, Phys. Chem. Chem. Phys. 20, 6648 (2018)

    Article  CAS  Google Scholar 

  32. C. Adán, J. Marugán, E. Sánchez, C. Pablos, R. Van Grieken, Electrochim. Acta 191, 521 (2016)

    Article  Google Scholar 

  33. R. Hussin, G.H. Seng, N.S. Zulkiflee, Z. Harun, M.N.M. Hatta, M.Z. Yunos, AIP Conf. Proc. 2068, 020096 (2019)

    Article  Google Scholar 

  34. A. Hoque, M.I. Guzman, Mater. (Basel). 11(10), 1990 (2018)

    Article  Google Scholar 

  35. S. Meng, J. Zhang, S. Chen, S. Zhang, W. Huang, Appl. Surf. Sci. 476, 982 (2019)

    Article  CAS  Google Scholar 

  36. A. Kumar, Mater. Sci. Eng. Int. J. 1, 106 (2017)

    Google Scholar 

  37. Y.W. Chen, Y.H. Hsu, Catalysts 11, 1275 (2021)

    Article  Google Scholar 

  38. R.D. Suryavanshi, S.V. Mohite, A.A. Bagade, K.Y. Rajpure, Mater. Sci. Eng. B 248, 114386 (2019)

    Article  CAS  Google Scholar 

  39. N. Talebian, M.R. Nilforoushan, R. Ramazan Ghasem, J. Sol–Gel Sci. Technol. 64, 36 (2012)

    Article  CAS  Google Scholar 

  40. Z. Ren, X. Liu, Z. Zhuge, Y. Gong, C.Q. Sun, Chin. J. Catal. 41, 180 (2020)

    Article  CAS  Google Scholar 

  41. A. Rahmati, A. Farokhipour, J. Clust. Sci. 30, 521 (2019)

    Article  CAS  Google Scholar 

  42. L. Nie, Q. Zhang, Inorg. Chem. Front. 4, 1953 (2017)

    Article  CAS  Google Scholar 

  43. M.N. Ashiq, S. Irshad, M.F. Ehsan, S. Rehman, S. Farooq, M. Najam-Ul-Haq, A. Zia, New J. Chem. 41, 14689 (2017)

    Article  CAS  Google Scholar 

  44. E. Kharatzadeh, S.R. Masharian, R. Yousefi, Mater. Res. Bull. 135, 111127 (2021)

    Article  CAS  Google Scholar 

  45. Z. Li, L. Sun, Y. Liu, L. Zhu, D. Yu, Y. Wang, Y. Sun, M. Yu, Environ. Sci. Nano 6, 1507 (2019)

    Article  CAS  Google Scholar 

  46. F. Andrew Frame, E.C. Carroll, D.S. Larsen, M. Sarahan, N.D. Browning, F.E. Osterloh, Chem. Commun. (2008). https://doi.org/10.1039/b718796c

    Article  Google Scholar 

  47. S.T. Ahamed, C. Kulsi, Kirti, D. Banerjee, D.N. Srivastava, A. Mondal, Surf. Interfaces 25, 101149 (2021)

    Article  CAS  Google Scholar 

  48. N. Ghobadi, P. Sohrabi, H. Reza Hatami, Chem. Phys. 538, 110911 (2020)

    Article  CAS  Google Scholar 

  49. X. Zheng, J. Yuan, J. Shen, J. Liang, J. Che, B. Tang, G. He, H. Chen, J. Mater. Sci.: Mater. Electron. 30, 5986 (2019)

    CAS  Google Scholar 

  50. M. Baneto, A. Enesca, Y. Lare, K. Jondo, K. Napo, A. Duta, Ceram. Int. 40, 8397 (2014)

    Article  CAS  Google Scholar 

  51. N. Lehraki, M.S. Aida, S. Abed, N. Attaf, A. Attaf, M. Poulain, Curr. Appl. Phys. 12, 1283 (2012)

    Article  Google Scholar 

  52. D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, X. Wang, Nanomaterials 10, 1 (2020)

    Google Scholar 

  53. K. Adesina, M. Iqbal, H. Louis, O. Solomon, Mater. Sci. Energy Technol. 2, 329 (2019)

    Google Scholar 

  54. M. Deo, D. Shinde, A. Yengantiwari, J. Jog, B. Hannoyer, X. Sauvage, M. More, S. Ogale, J.M. Chem. 22, 17055–17062 (2012)

    Article  CAS  Google Scholar 

  55. S. Velanganni, S. Pravinraj, P. Immanuel, R. Thiruneelakandan, Physica B 534, 56 (2018)

    Article  CAS  Google Scholar 

  56. M.H. Habibi, M.H. Rahmati, Spectrochim. Acta A 137, 160 (2015)

    Article  CAS  Google Scholar 

  57. A.A. Al-Zahrani, Z. Zainal, Z.A. Talib, H.N. Lim, L. Mohd Fudzi, A.M. Holi, M. Sarif-Mohd Ali, J. Nanomater. (2019). https://doi.org/10.1155/2019/5212938

    Article  Google Scholar 

  58. C. Florica, A. Costas, N. Preda, M. Beregoi, A. Kuncser, N. Apostol, C. Popa, G. Socol, V. Diculescu, I. Enculescu, Sci. Rep. 9, 1 (2019)

    Article  CAS  Google Scholar 

  59. D. Saravanakkumar, H.A. Oualid, Y. Brahmi, A. Ayeshamariam, M. Karunanaithy, A.M. Saleem, K. Kaviyarasu, S. Sivaranjani, M. Jayachandran, OpenNano 4, 100025 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DV performed conceptualization, validation, investigation, data curation and writing. AS performed visualization, writing and editing. BV performed conceptualization, validation, reviewing and editing.

Corresponding author

Correspondence to B. Vidhya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepthi, V., Sebastian, A. & Vidhya, B. Influence of precursors and formation of heterostructures towards the enhanced photocatalytic activity of ZnO thin films deposited by spray pyrolysis. J Mater Sci: Mater Electron 33, 24111–24124 (2022). https://doi.org/10.1007/s10854-022-09055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09055-2

Navigation