Skip to main content
Log in

One-pot sono-hydrothermal design of single vs. dual Cu–Cd sulfides nanophotocatalyst over zinc oxide with efficient light-responsive activity for photodegradation of organic dyes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In present research, we designed the novel CuS–CdS/ZnO ternary nanophotocatalysts with various weight percentages of ZnO (80 and 90 wt%) via one-pot sono-hydrothermal method. These nanocomposites efficiently use the sunlight irradiation as a neat and endless energy resource, reduce the recombination rate of the photo-produced e–h+ pairs, and increase ZnO photocatalytic performance. Furthermore, we synthesized CdS/ZnO, CuS/ZnO, CuS–CdS, and their bare samples and compared their photocatalytic activities with the as-prepared ternary nanophotocatalysts. Fabricated nanophotocatalysts were characterized via X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), Brunauer–Emmett–Teller (BET) surface area and Barrett–Joyner–Halenda (BJH) pore size and volume analyses, diffuse reflectance spectroscopy (DRS), and point of zero charge pH (pHpzc). Surprisingly, the synthesized ternary nanophotocatalyst with 90 wt% of ZnO (CuS–CdS/ZnO(90)) had the highest photocatalytic activity compared to the other prepared nanophotocatalysts. It removed 97.1% of methylene blue in 140 min. Therefore, using the ternary structure has led to the outstanding photocatalytic performance under simulated sunlight illumination. Additionally, the photodegradation of various dyes, the influence of initial pH solution, and reusability of the optimum photocatalyst were verified in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Piriyanon, T. Chankhanittha, S. Youngme, K. Hemavibool, S. Nijpanich, S. Juabrum, N. Chanlek, S. Nanan, J. Mater. Sci.: Mater. Electron. 32, 19798–19819 (2021)

    CAS  Google Scholar 

  2. S.T. Fardood, Z. Golfar, A. Ramazani, J. Mater. Sci.: Mater. Electron. 28, 17002–17008 (2017)

    CAS  Google Scholar 

  3. K. Santhi, C. Rani, S. Karuppuchamy, J. Mater. Sci.: Mater. Electron. 27, 5033–5038 (2016)

    CAS  Google Scholar 

  4. L. Zhang, L. Huang, X. Jiang, J. Li, X. Sun, J. Mater. Sci.: Mater. Electron. 32, 337–346 (2021)

    CAS  Google Scholar 

  5. L. Yang, Y. Xin, C. Yao, Y. Miao, J. Mater. Sci.: Mater. Electron. 32, 13382–13395 (2021)

    CAS  Google Scholar 

  6. M. Rafique, M. Hamza, M.B. Tahir, S. Muhammad, A.G. Al-Sehemi, J. Mater. Sci.: Mater. Electron. 31, 12913–12925 (2020)

    CAS  Google Scholar 

  7. E. Abbasi, M. Haghighi, R. Shokrani, M. Shabani, Mater. Res. Bull. 129, 110880 (2020)

    Article  CAS  Google Scholar 

  8. F. Wang, H. Yang, H. Zhang, J. Jiang, J. Mater. Sci.: Mater. Electron. 29, 1304–1316 (2018)

    CAS  Google Scholar 

  9. C. Zheng, H. Yang, Z. Cui, H. Zhang, X. Wang, Nanoscale Res. Lett. 12, 608 (2017)

    Article  Google Scholar 

  10. M.E. Khan, M.M. Khan, M.H. Cho, J. Colloid Interface Sci. 482, 221–232 (2016)

    Article  CAS  Google Scholar 

  11. A. Ahmad, S.H. Mohd-Setapar, C.S. Chuong, A. Khatoon, W.A. Wani, R. Kumar, M. Rafatullah, RSC Adv. 5, 30801–30818 (2015)

    Article  CAS  Google Scholar 

  12. Z. Abdollahizadeh, M. Haghighi, M. Shabani, Sep. Purif. Technol. 278, 119574 (2021)

    Article  Google Scholar 

  13. A. Badi Sar, E. Ghareh Shabani, M. Haghighi, M. Shabani, J. Taiwan Inst. Chem. Eng. 132, 1131 (2022)

    Google Scholar 

  14. N. Mikaeeli, M. Haghighi, E. Fatehifar, M. Shabani, Appl. Surf. Sci. 572, 151433 (2022)

    Article  CAS  Google Scholar 

  15. S.T. Fardood, K. Atrak, A. Ramazani, J. Mater. Sci.: Mater. Electron. 28, 10739–10746 (2017)

    CAS  Google Scholar 

  16. K. Atrak, A. Ramazani, S. Taghavi Fardood, J. Mater. Sci. Mater. Electron. 29, 6702–6710 (2018)

    Article  CAS  Google Scholar 

  17. F. Beshkar, O. Amiri, M. Salavati-Niasari, F. Beshkar, J. Mater. Sci.: Mater. Electron. 26, 8182–8192 (2015)

    CAS  Google Scholar 

  18. B. Wang, W. Feng, L. Zhang, Y. Zhang, X. Huang, Z. Fang, P. Liu, Appl. Catal. B 206, 510–519 (2017)

    Article  CAS  Google Scholar 

  19. F. Wang, C. Di Valentin, G. Pacchioni, ChemCatChem 4, 476–478 (2012)

    Article  Google Scholar 

  20. M. Pirhashemi, A. Habibi-Yangjeh, J. Photochem. Photobiol. A 363, 31–43 (2018)

    Article  CAS  Google Scholar 

  21. A. Malathi, J. Madhavan, J. Nano Res. 48, 49–61 (2017)

    Article  CAS  Google Scholar 

  22. L. An, G. Wang, Y. Cheng, L. Zhao, F. Gao, Y. Cheng, Russ. J. Phys. Chem. A 89, 1878–1883 (2015)

    Article  CAS  Google Scholar 

  23. S. Talebi, N. Chaibakhsh, Z. Moradi-Shoeili, J. Appl. Res. Technol. 15, 378–385 (2017)

    Article  Google Scholar 

  24. S. Velanganni, S. Pravinraj, P. Immanuel, R. Thiruneelakandan, Physica B 534, 56–62 (2018)

    Article  CAS  Google Scholar 

  25. P. Chaengchawi, K. Serivalsatit, P. Sujaridworakun, Key Eng. Mater. 608, 224–229 (2014)

    Article  Google Scholar 

  26. A. Talati, M. Haghighi, Sol. Energy 234, 275–293 (2022)

    Article  CAS  Google Scholar 

  27. E. Ferdosi, H. Bahiraei, D. Ghanbari, Sep. Purif. Technol. 211, 35–39 (2019)

    Article  CAS  Google Scholar 

  28. Z. Gao, N. Liu, D. Wu, W. Tao, F. Xu, K. Jiang, Appl. Surf. Sci. 258, 2473–2478 (2012)

    Article  CAS  Google Scholar 

  29. J.-W. Shi, X. Yan, H.-J. Cui, X. Zong, M.-L. Fu, S. Chen, L. Wang, J. Mol. Catal. A: Chem. 356, 53–60 (2012)

    Article  CAS  Google Scholar 

  30. J. Zhang, J. Yu, M. Jaroniec, J.R. Gong, Nano Lett. 12, 4584–4589 (2012)

    Article  CAS  Google Scholar 

  31. B.G.T. Keerthana, P. Murugakoothan, Vacuum 159, 476–481 (2019)

    Article  Google Scholar 

  32. A. Kumar, A. Singhal, J. Mater. Chem. 21, 481–496 (2011)

    Article  CAS  Google Scholar 

  33. S. Farhadi, F. Siadatnasab, Chin. J. Catal. 37, 1487–1495 (2016)

    Article  CAS  Google Scholar 

  34. M. Lee, K. Yong, Nanotechnology 23, 194014 (2012)

    Article  Google Scholar 

  35. M. Maleki, M. Haghighi, J. Mol. Catal. A: Chem. 424, 283–296 (2016)

    Article  CAS  Google Scholar 

  36. K.E. Ahmed, D.-H. Kuo, M.A. Zeleke, O.A. Zelekew, A.K. Abay, J. Photochem. Photobiol. A 369, 133–141 (2019)

    Article  CAS  Google Scholar 

  37. D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibañez, I. Di Somma, Appl. Catal. B 170–171, 90–123 (2015)

    Article  Google Scholar 

  38. G. Thirumala Rao, B. Babu, R. Joyce Stella, V. Pushpa Manjari, R.V.S.S.N. Ravikumar, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 139, 86–93 (2015)

    Article  CAS  Google Scholar 

  39. J. Feng, Z. Zhang, M. Gao, M. Gu, J. Wang, W. Zeng, Y. Lv, Y. Ren, Z. Fan, Mater. Chem. Phys. 223, 758–761 (2019)

    Article  CAS  Google Scholar 

  40. E. Cui, G. Hou, X. Chen, F. Zhang, Y. Deng, G. Yu, B. Li, Y. Wu, Appl. Catal. B 241, 52–65 (2019)

    Article  CAS  Google Scholar 

  41. E. Abbasi Asl, M. Haghighi, A. Talati, Solar Energy 184, 426–439 (2019)

    Article  CAS  Google Scholar 

  42. W.-H. Zhao, Z.-Q. Wei, X.-L. Zhu, X.-D. Zhang, J.-L. Jiang, Int. J. Mater. Res. 109, 405–412 (2018)

    Article  CAS  Google Scholar 

  43. W. Zhao, Z. Wei, L. Zhang, X. Wu, X. Wang, Mater. Sci. Semicond. Process. 88, 173–180 (2018)

    Article  CAS  Google Scholar 

  44. M. Jabeen, M.A. Iqbal, R.V. Kumar, M. Ahmed, M.T. Javed, Chin. Phys. B 23, 018504 (2014)

    Article  Google Scholar 

  45. J. Zhang, B. Long, S. Cheng, W. Zhang, Int. J. Photoenergy 2013, 986076 (2013)

    Google Scholar 

  46. G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 41, 207–219 (1998)

    Article  CAS  Google Scholar 

  47. I. Ghasemi, M. Haghighi, A. Talati, E. Abbasi Asl, J. Clean. Prod. 335, 130355 (2022)

    Article  CAS  Google Scholar 

  48. M. Kosmulski, J. Colloid Interface Sci. 298, 730–741 (2006)

    Article  CAS  Google Scholar 

  49. L.M. Tokubo, P.L. Rosalen, J. de Cássia Orlandi, I.A. Sardi, M. Fujimaki, J.E. Umeda, P.M. Barbosa, G.O. Tecchio, N. Hioka, C.F. de Freitas, R.S. Suga Terada, Photodiagnosis Photodyn. Ther. 23, 94–98 (2018)

    Article  CAS  Google Scholar 

  50. E.S. Khatibi, M. Haghighi, S. Mahboob, Appl. Surf. Sci. 465, 937–949 (2019)

    Article  CAS  Google Scholar 

  51. A. Talati, M. Haghighi, J. Photochem. Photobiol. A 430, 113955 (2022)

    Article  CAS  Google Scholar 

  52. E. Abbasi Asl, M. Haghighi, A. Talati, Sep. Purif. Technol. 251, 1173 (2020)

    Article  Google Scholar 

  53. U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170, 520–529 (2009)

    Article  CAS  Google Scholar 

  54. J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Chem. Eng. J. 185–186, 91–99 (2012)

    Article  Google Scholar 

Download references

Funding

We acknowledge the project support funds provided by Iran National Science Foundation and Sahand University of Technology.

Author information

Authors and Affiliations

Authors

Contributions

The team members are contributed based on the following roles: BAZ: Conceptualization, Methodology, Investigation, and Writing—Original draft preparation. MH: Project administration, Conceptualization, Methodology, Resources, Visualization, Supervision, and Writing—Reviewing and Editing. AT: Conceptualization, Methodology, and Writing—Reviewing and Editing.

Corresponding author

Correspondence to Mohammad Haghighi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asefi Zanjani, B., Haghighi, M. & Talati, A. One-pot sono-hydrothermal design of single vs. dual Cu–Cd sulfides nanophotocatalyst over zinc oxide with efficient light-responsive activity for photodegradation of organic dyes. J Mater Sci: Mater Electron 33, 24089–24110 (2022). https://doi.org/10.1007/s10854-022-09054-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09054-3

Navigation