Skip to main content

Advertisement

Log in

Effect of BFO layer position on energy storage properties of STO/BFO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Heterostructure is highly effective to improve the energy storage properties of the thin films for one phase provides large polarization and the other phase maintains high electrical breakdown strength. In this paper, the two-layered and the sandwich-structured BFO/STO thin films were prepared by a sol–gel method, respectively. The influence of BFO layer positions on the electrical properties was investigated. The results show that compared with the two-layered film, the breakdown strength of the sandwiched film is increased by 29.2% to 2.431 MV/cm, the energy storage density is significantly improved. The recoverable energy storage density is 29.5 J/cm3 with an efficiency of 54.8%. Its dielectric properties at 10 kHz are: the dielectric constant is 111, the dielectric loss is 0.036 and the capacitance-temperature variation from room temperature to 145 °C is lower than 15%. It indicates that the sandwich structure is superior to the two-layered film since the former shows more interface which is beneficial to inhibit electronic tree growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared since the figures were licensed by the publishers of the origin references.

References

  1. R.M. Mafizur, A. Khosrul, Clean energy, population density, urbanization and environmental pollution nexus: evidence from Bangladesh. Renew. Energ. 172, 1063–1072 (2021)

    Article  Google Scholar 

  2. J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020)

    Article  CAS  Google Scholar 

  3. P. Sadorsky, Wind energy for sustainable development: driving factors and future outlook. J. Clean. Prod. 289, 125779 (2021)

    Article  Google Scholar 

  4. M. Feng, Y. Feng, T. Zhang, J. Li, Q. Chen, Q. Chi, Q. Lei, Recent advances in multilayer-structure dielectrics for energy storage application. Adv. Sci. 8, 2102221 (2021)

    Article  CAS  Google Scholar 

  5. S. Goswami, G.R. Dillip, S. Nandy, A.N. Banerjee, A. Pimentel, S.W. Joo, R. Martins, E. Fortunato, Biowaste-derived carbon black applied to polyaniline-based high-performance supercapacitor microelectrodes: sustainable materials for renewable energy applications. Electrochim. Acta 316, 202–218 (2019)

    Article  CAS  Google Scholar 

  6. D. Versaci, I. Canale, S. Goswami, J. Amici, C. Francia, E. Fortunato, R. Martins, L. Pereira, S. Bodoardo, Molybdenum disulfide/polyaniline interlayer for lithium polysulphide trapping in lithium-sulphur batteries. J. Power Sources 521, 230945 (2022)

    Article  CAS  Google Scholar 

  7. D. Li, X. Zeng, Z. Li, Z.Y. Shen, H. Hao, W. Luo, X. Wang, F. Song, Z. Wang, Y. Li, Progress and perspectives in dielectric energy storage ceramics. J. Adv. Ceram. 10(4), 675–703 (2022)

    Article  Google Scholar 

  8. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M. Lanagan, H. Liu, Homogeneous/inhomogeneous-structured dielectrics and their energystorage performances. Adv. Mater. 29, 1601727 (2017)

    Article  Google Scholar 

  9. Z. Li, D. Li, Z.Y. Li, Remarkably enhanced dielectric stability and energy storage properties in BNT-BST relaxor ceramics by A-site defect engineering for pulsed power applications. J. Adv. Ceram. 11(2), 283–294 (2022)

    Article  CAS  Google Scholar 

  10. H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018)

    Article  Google Scholar 

  11. J.W. McPherson, K. Jinyoung, A. Shanware, H. Mogul, J. Rodriguez, Trends in the ultimate breakdown strength of high dielectric-constant materials. IEEE T. Electron. Dev. 508, 1771–1778 (2003)

    Article  Google Scholar 

  12. J. Zhang, J. Wang, D. Gao, H. Liu, J. Xie, W. Hu, Enhanced energy storage performances of CaTiO3-based ceramic through A-site Sm3+ doping and A-site vacancy. J. Eur. Ceram. Soc. 41(1), 352–359 (2021)

    Article  Google Scholar 

  13. L. Zhang, Y. Pu, M. Chen, T. Wei, X. Peng, Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem. Eng. J. 383(1), 123154 (2020)

    Article  CAS  Google Scholar 

  14. J. Qian, Y. Han, C. Yang, P. Lv, X. Zhang, C. Feng, X. Lin, S. Huang, X. Cheng, Z. Cheng, Energy storage performance of flexible NKBT/NKBT-ST multilayer film capacitor by interface engineering. Nano Energy 74, 104862 (2020)

    Article  CAS  Google Scholar 

  15. Y. Shen, Y. Hu, W. Chen, J. Wang, Y. Guan, J. Du, X. Zhang, J. Ma, M. Li, Y. Lin, L.Q. Chen, C.W. Nan, Modulation of topological structure induces ultrahigh energy density of grapheme/Ba0.6Sr0.4TiO3 nanofiber/nanocomposites. Nano Energy 18, 176–186 (2015)

    Article  CAS  Google Scholar 

  16. Z. Sun, C. Ma, M. Liu, J. Cui, J. Lu, X. Lou, L. Jin, H. Wang, C. Jia, Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv. Mate. 19, 1604427 (2017)

    Article  Google Scholar 

  17. K.A. Mlüler, Quantum para-, ferro-, and random electric behaviors in oxide perovskites. Jpn. J. Appl. Phys. 24, 89–93 (1985)

    Article  Google Scholar 

  18. W. Gao, M. Yao, X. Yao, Improvement of energy density in SrTiO3 film capacitor via self-repairing behavior. Ceram. Int. 43, 13069–13074 (2017)

    Article  CAS  Google Scholar 

  19. Y. Peng, M. Yao, X. Yao, Interfacial origin of enhanced energy density in SrTiO3-based nanocomposite films. Ceram. Int. 44, 3032–3039 (2018)

    Article  CAS  Google Scholar 

  20. C. Diao, H. Li, Y. Yang, H. Hao, Z. Yao, H. Liu, Significantly improved energy storage properties of sol-gel derived Mn-modified SrTiO3 thin films. Ceram. Int. 45(9), 11784–11791 (2019)

    Article  CAS  Google Scholar 

  21. C. Ederer, N.A. Spaldin, Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95(25), 257601 (2005)

    Article  Google Scholar 

  22. S. Nakashima, T. Higuchi, A. Yasui, T. Kinoshita, M. Shimizu, H. Fujisawa, Enhancement of photovoltage by electronic structure evolution in multiferroic Mn-doped BiFeO3 thin films. Sci. Rep. -UK 10(1), 15108 (2020)

    Article  CAS  Google Scholar 

  23. W.R. Geng, Y.L. Tang, Y.L. Zhu, Y.J. Wang, B. Wu, L.X. Yang, Y.P. Feng, M.J. Zou, T.T. Shi, Y. Cao, X.L. Ma, Magneto–electric–optical coupling in multiferroic BiFeO3-based films. Adv. Mater. 34(32), 2106396 (2022)

    Article  CAS  Google Scholar 

  24. B. Sun, S. Mao, S. Zhu, G. Zhou, Y. Xia, Y. Zhao, Improved rate and cycling performances of electrodes based on BiFeO3 nanoflflakes by compositing with organic pectin for advanced rechargeable Na-ion batteries. ACS Appl. Nano Mater. 1, 1291–1299 (2018)

    Article  CAS  Google Scholar 

  25. P. Chen, P. Li, J. Zhai, B. Shen, F. Li, S. Wu, Enhanced dielectric and energy-storage properties in BiFeO3-modified Bi0.5(Na0.8K0.2)0.5TiO3 thin films. Ceram. Int. 43, 13371–13376 (2017)

    Article  CAS  Google Scholar 

  26. C. Diao, H. Liu, G. Lou, H. Zheng, Z. Yao, H. Hao, M. Cao, Structure and electric properties of sandwich-structured SrTiO3/BiFeO3 thin films for energy storage applications. J. Alloy. Compd. 781, 378–384 (2019)

    Article  CAS  Google Scholar 

  27. C. Diao, H. Liu, Z. Li, Z. Yao, H. Hao, M. Cao, Simultaneously achieved high energy storage density and efficiency in sol-gel-derived amorphous Mn-doped SrTiO3 thin films. J. Alloy. Compd. 845, 155636 (2020)

    Article  CAS  Google Scholar 

  28. P. Neelakantaswamy, B. Chowdari, A. Rajaratnam, Estimation of permittivity of a compact crystal by dielectric measurements on its powder: a stochastic mixture model for the powder-dielectric. J. Phys. D: Appl. Phys. 16, 1785–1799 (1983)

    Article  CAS  Google Scholar 

  29. C. Hou, W. Huang, W. Zhao, D. Zhang, Y. Yin, X. Li, Ultrahigh energy density in SrTiO3 film capacitors. ACS Appl. Mater. Inter. 9, 20484–20490 (2017)

    Article  CAS  Google Scholar 

  30. Z. Wu, J. Zhou, W. Chen, J. Shen, H. Yang, S. Zhang, Y. Liu, Improvement in temperature dependence and dielectric tunability properties of PbZr052Ti048O3 films using Ba(Mg1/3Ta2/3)O3 buffer layer. Appl. Surf. Sci. 2016(388), 579–583 (2016)

    Article  Google Scholar 

  31. W. Pan, M. Cao, A. Jan, H. Hao, Z. Yao, H. Liu, High breakdown strength and energy storage performance in (Nb, Zn) modified SrTiO3 ceramics via synergy manipulation. J. Mater. Chem. C 8, 2019–2027 (2020)

    Article  CAS  Google Scholar 

  32. H. Dai, T. Li, Z. Chen, D. Liu, R. Xue, C. Zhao, H. Liu, N. Huang, Studies on the structural, electrical and magnetic properties of Ce-doped BiFeO3 ceramics. J. Alloy. Compd. 2016(672), 182–189 (2016)

    Article  Google Scholar 

  33. P. Singh, P.K. Rout, H. Pandey, A. Dogra, Temperature-dependent space-charge-limited conduction in BaTiO3 heterojunctions. J. Mater. Sci. 53, 4806–4813 (2018)

    Article  CAS  Google Scholar 

  34. M.J. Hanna, H. Zhao, J.C. Lee, Poole Frenkel current and Schottky emission in SiN gate dielectric in AlGaN/GaN metal insulator semiconductor heterostructure field effect transistors. Appl. Phys. Lett. 101, 153504 (2012)

    Article  Google Scholar 

  35. B.C. Luo, H.J. Dong, D.Y. Wang, K.X. Jin, Large recoverable energy density with excellent thermal stability in Mn-modified NaNbO3-CaZrO3 lead-free thin films. J. Am. Ceram. Soc. 101, 3460–3467 (2018)

    Article  CAS  Google Scholar 

  36. F. Wang, C. Zhu, S.F. Zhao, Good energy storage properties of Na0.5Bi0.5TiO3 thin films. J. Alloy. Compd. 869, 159366 (2021)

    Article  CAS  Google Scholar 

  37. Z. Li, H. Liu, Z. Yao, J. Xie, X. Liu, C. Diao, A. Ulah, H. Hao, M. Cao, Novel BiAlO3 dielectric thin films with high energy density. Ceram. Int. 45(17), 22523–22527 (2019)

    Article  CAS  Google Scholar 

  38. Z. Xu, H. Qiang, Y. Chen, Improved energy storage properties of Mn and Y co-doped BST films. Mater. Lett. 259, 126894 (2020)

    Article  CAS  Google Scholar 

  39. X. Xia, H. Sun, H. Sui, S. Xiao, X. Liu, D. Huang, Investigation on high energy storage properties in La3+-doped 0.88PMN-0.12PT relaxor ferroelectric films. Surf. Interfaces 28, 101670 (2021)

    Article  Google Scholar 

  40. W. Gao, M. Yao, X. Yao, Achieving ultrahigh breakdown strength and energy storage performance through periodic interface modification in SrTiO3 thin film. ACS Appl. Mater. Inter. 10, 28745–28753 (2018)

    Article  CAS  Google Scholar 

  41. W.J. Merz, Double hysteresis loop of BaTiO3 at the Curie point. Phys. Rev. 91(3), 512–517 (1953)

    Article  Google Scholar 

  42. Q. Tan, J. Li, D. Viehland, Role of lower valent substituent-oxygen vacancy complexes in polarization pinning in potassium-modified lead zirconate titanate. Appl. Phys. Lett. 75, 418–420 (1999)

    Article  CAS  Google Scholar 

  43. B. Xu, C. Paillard, B. Dkhil, L. Brllaiche, Pinched hysteresis loop in defect-free ferroelectric materials. Phys. Rev. B 94, 140101 (2019)

    Article  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of China (51802078).

Author information

Authors and Affiliations

Authors

Contributions

DZ: Writing and editing. CL: Drawing. SH: Investigation references. CD: Experiment, Data analyzing. GL: Editing and review.

Corresponding authors

Correspondence to Chunli Diao or Guanghui Lou.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. In this manuscript, we did not collect any samples of human and animals. We summarized the research progress of energy storage dielectrics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Li, C., Han, S. et al. Effect of BFO layer position on energy storage properties of STO/BFO thin films. J Mater Sci: Mater Electron 33, 24078–24088 (2022). https://doi.org/10.1007/s10854-022-09041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09041-8

Navigation