Skip to main content
Log in

Synthesis of centimeter-scale WS2 membrane by chemical vapor deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenides (TMDCs) are among the most widely studied two-dimensional materials due to their unique physical properties, but synthesis of large area of monolayer TMDCs films is still a great challenge. In this study, a simple and universal promoter-assisted chemical vapor deposition (CVD) method is proposed for the synthesis of centimeter-scale of Tungsten disulfide (WS2) membranes. The highly volatile transition metal halides formed by the reaction of Tungstic acid (H2WO4) and Sodium chloride (NaCl) effectively reduces the growth temperature of WS2, and the vulcanization energy barrier for the growth of WS2 monolayer, thus improve the growth rate along the in-plane direction. By optimizing the experimental parameters, high quality of WS2 films in centimeter-sizes are prepared. This study provides a method for the preparation of large-scale WS2 films and lays a foundation for the industrial application of large-scale two-dimensional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. All data generated or analyzed during this study are included in this published article.

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  CAS  Google Scholar 

  2. M. Patel, P.M. Pataniya, V. Patel, C.K. Sumesh, Flexible photodetector based on graphite/ZnO-WS2 nanohybrids on paper. J. Mater. Sci.: Mater. Electron. 33, 13771 (2022)

    CAS  Google Scholar 

  3. D.S. Patric, P. Bharathi, M.K. Mohan, C. Muthamizchelvan, S. Harish, M. Navaneethan, Liquid phase exfoliated WS2 nanosheet-based gas sensor for room temperature NO2 detection. J. Mater. Sci.: Mater. Electron. 33, 9235 (2022)

    Google Scholar 

  4. H. Zhao, Y. Mao, X. Mao, X. Shi, C. Xu, C. Wang, S. Zhang, D. Zhou, Band structure and photoelectric characterization of GeSe monolayers. Adv. Funct. Mater. 28, 1704855 (2017)

    Article  Google Scholar 

  5. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011)

    Article  CAS  Google Scholar 

  6. K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang, K.F. Mak, C.J. Kim, D. Muller, J. Park, High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656 (2015)

    Article  CAS  Google Scholar 

  7. H. Zeng, G.B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, X. Cui, Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013)

    Article  Google Scholar 

  8. D. Xiao, G. Liu, W. Feng, X. Xu, W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)

    Article  Google Scholar 

  9. Z. Zhu, Y. Cheng, U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011)

    Article  Google Scholar 

  10. B. Shi, D. Zhou, R. Qiu, M. Bahri, X. Kong, H. Zhao, C. Tlili, D. Wang, High-efficiency synthesis of large-area monolayer WS2 crystals on SiO2/Si substrate via NaCl-assisted atmospheric pressure chemical vapor deposition. Appl. Surf. Sci. 533, 147479 (2020)

    Article  CAS  Google Scholar 

  11. H. Zhao, X. Mao, D. Zhou, S. Feng, X. Shi, Y. Ma, X. Wei, Y. Mao, Bandgap modulation of MoS2 monolayer by thermal annealing and quick cooling. Nanoscale 8, 18995 (2016)

    Article  CAS  Google Scholar 

  12. H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano. Lett. 13, 3447 (2013)

    Article  CAS  Google Scholar 

  13. Z. Zou, J. Liang, X. Zhang, C. Ma, P. Xu, X. Yang, Z. Zeng, X. Sun, C. Zhu, D. Liang, X. Zhuang, D. Li, A. Pan, Liquid-metal-assisted growth of vertical GaSe/MoS2 p-n heterojunctions for sensitive self-driven photodetectors. ACS Nano 6, 10039 (2021)

    Article  Google Scholar 

  14. X. Wang, B. Zheng, J. Yi, H. Liu, X. Sun, C. Zhu, Y. Liu, L. Fang, D. Li, A. Pan, Controlled growth of SnSe/MoS2 vertical p–n heterojunction for optoelectronic application. Nano Fut. 5, 15002 (2021)

    Article  CAS  Google Scholar 

  15. Y.H. Chang, W. Zhang, Y. Zhu, Y. Han, J. Pu, J.K. Chang, W.T. Hsu, J.K. Huang, C.L. Hsu, M.H. Chiu, T. Takenobu, H. Li, C.I. Wu, W.H. Chang, A.T.S. Wee, L.J. Li, Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582 (2014)

    Article  CAS  Google Scholar 

  16. L. Liu, L. Kong, Q. Li, C. He, L. Ren, Q. Tao, X. Yang, J. Lin, B. Zhao, Z. Li, Y. Chen, W. Li, W. Song, Z. Lu, G. Li, S. Li, X. Duan, A. Pan, L. Liao, Y. Liu, Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 4, 342 (2021)

    Article  CAS  Google Scholar 

  17. M.S.A. Mamun, Y. Tanaka, H. Waizumi, T. Takaoka, Z. Wang, M.I. Alam, A. Ando, M. Fukuyama, A. Hibara, T. Komeda, Microfluidic tank assisted nicotine sensing property of field effect transistor composed of an atomically thin MoS2 channel. Phys. Chem. Chem. Phys. 22, 27724 (2020)

    Article  CAS  Google Scholar 

  18. S.Y. Cho, S.J. Kim, Y. Lee, J.S. Kim, W.B. Jung, H.W. Yoo, J. Kim, H.T. Jung, Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 9, 9314 (2015)

    Article  CAS  Google Scholar 

  19. Y. Li, Ch. Fan, J. Zhen, A high efficiency electrochemical sensor of dopamine based on WS2 nanosheets decorated with dandelion-like platinum-silver nanoparticles. J. Mater. Sci.: Mater. Electron. 33, 5061 (2022)

    CAS  Google Scholar 

  20. M. Chhowalla, G.A.J. Amaratunga, Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164 (2000)

    Article  CAS  Google Scholar 

  21. Y. Mao, X. Mao, H. Zhao, N. Zhang, X. Shi, J. Yuan, Enhancement of photoluminescence efficiency in GeSe ultrathin slab by thermal treatment and annealing: experiment and first-principles molecular dynamics simulations. Sci. Rep. 8, 17671 (2018)

    Article  Google Scholar 

  22. F. Huang, J. Jian, R. Wu, Few-layer thick WS2 nanosheets produced by intercalation/exfoliation route. J. Mater. Sci. 51, 10160 (2016)

    Article  CAS  Google Scholar 

  23. B. Mukherjee, Y. Cai, H.R. Tan, Y.P. Feng, E.S. Tok, C.H. Sow, NIR Schottky photodetectors based on individual single-crystalline GeSe nanosheet. ACS Appl. Mater. Interfaces 5, 9594 (2013)

    Article  CAS  Google Scholar 

  24. S. Lee, J.E. Jung, H.G. Kim, Y. Lee, J.M. Park, J. Jang, S. Yoon, A. Ghosh, M. Kim, J. Kim, W. Na, J. Kim, H.J. Choi, H. Cheong, K. Kim, gamma-GeSe: a new hexagonal polymorph from group IV-VI monochalcogenides. Nano. Lett. 21, 1530 (2021)

    Article  Google Scholar 

  25. J. Xu, D.J. Srolovitz, D. Ho, The adatom concentration profile: a paradigm for understanding two-dimensional MoS2 morphological evolution in chemical vapor deposition growth. ACS Nano 15, 6839 (2021)

    Article  CAS  Google Scholar 

  26. S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, J.H. Warner, Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 26, 6371 (2014)

    Article  CAS  Google Scholar 

  27. M. Kim, J. Seo, J. Kim, J.S. Moon, J. Lee, J.H. Kim, J. Kang, H. Park, High-crystalline monolayer transition metal dichalcogenides films for wafer-scale electronics. ACS Nano 15, 3038 (2021)

    Article  CAS  Google Scholar 

  28. J. Shen, L. Zhan, C. Wang, C. Wu, X. Zhang, J. Yan, X. Wang, B. Ge, M. Long, H. Zhao, X. Shi, W. Guo, Isomeric compound dendrites on a monolayer WS2 substrate: morphological engineering and formation mechanism. ACS Appl. Nano. Mater. 4, 8408 (2021)

    Article  CAS  Google Scholar 

  29. Y. Huang, G. Zhang, B. Yan, B. Ning, H. Zhao, The Synthesis of WS atomic layers under varying source-substrate distance. J. Phys. Conf. Ser. 1885, 32075 (2021)

    Article  CAS  Google Scholar 

  30. M.R.R.T. Boyuk, H. Ghanbari, A. Simchi, A. Maghsoumi, Seedless growth of two-dimensional disc-shaped WS2 layers by chemical vapor deposition. Mater. Chem. Phys. 257, 123837 (2021)

    Article  Google Scholar 

  31. P. Chang, S. Zhang, L. Guan, H. Zhang, G. Chen, J. Tao, Defect-mediated strong exciton-phonon coupling between flower-like WS2 film with vicinity layers. J. Lumin. 226, 117483 (2020)

    Article  CAS  Google Scholar 

  32. Y.R. Lim, J.K. Han, Y. Yoon, J.B. Lee, C. Jeon, M. Choi, H. Chang, N. Park, J.H. Kim, Z. Lee, W. Song, S. Myung, S.S. Lee, K.S. An, J.H. Ahn, J. Lim, Atomic-level customization of 4 in. Transition metal dichalcogenide multilayer alloys for industrial applications. Adv. Mater. 31, 1901405 (2019)

    Article  Google Scholar 

  33. K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C.Y. Su, C.S. Chang, H. Li, Y. Shi, H. Zhang, C.S. Lai, L.J. Li, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano. Lett. 12, 1538 (2012)

    Article  CAS  Google Scholar 

  34. C.M. Orofeo, S. Suzuki, Y. Sekine, H. Hibino, Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Appl. Phys. Lett. 105, 83112 (2014)

    Article  Google Scholar 

  35. S. Li, S. Wang, D. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, G. Eda, Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today. 1, 60 (2015)

    Article  Google Scholar 

  36. Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. Engl. 50, 11093 (2011)

    Article  CAS  Google Scholar 

  37. Y. Zhang, J. Shi, G. Han, M. Li, Q. Ji, D. Ma, Y. Zhang, C. Li, X. Lang, Y. Zhang, Z. Liu, Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Res. 8, 2881 (2015)

    Article  CAS  Google Scholar 

  38. H.-Q. Zhao, G. Zhang, B. Yan, B. Ning, Ch. Wang, Y. Zhao, X. Shi, Substantially enhanced properties of 2D WS2 by high concentration of erbium doping against tungsten vacancy formation. Research 2022, 9840970 (2022)

    Article  CAS  Google Scholar 

  39. B. Yan, B. Ning, G. Zhang, D. Zhou, X. Shi, Ch. Wang, H.-Q. Zhao, Ultra-thin GeSe/WS2 vertical heterojunction with excellent optoelectronic performances. Adv. Opt. Mater. 2022, 2102413 (2022)

    Article  Google Scholar 

  40. C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, T. Yu, Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2, 131 (2014)

    Article  Google Scholar 

  41. B. Yan, G. Zhang, B. Ning, S. Chen, Y. Zhao, D. Zhou, X. Shi, J. Shen, Z. Xiao, H.-Q. Zhao, Preparation and photoelectric characterization of p-GeSe/p-WS2 heterojunction devices. J. Phys. D 55, 325101 (2022)

    Article  Google Scholar 

  42. A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.I. Chia, B. Wang, V.H. Crespi, F. López-Urías, J.C. Charlier, H. Terrones, M. Terrones, Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755 (2013)

    Article  Google Scholar 

  43. F. Dinelli, F. Fabbri, S. Forti, C. Coletti, O.V. Kolosov, P. Pingue, Scanning probe spectroscopy of WS2/graphene Van Der Waals Heterostructures. Nanomaterials 10, 2494 (2020)

    Article  CAS  Google Scholar 

  44. G. Pradhan, A.K. Sharma, Linear and nonlinear optical response of sulfur-deficient nanocrystallite WS2 thin films. J. Mater. Sci. 54, 14809 (2019)

    Article  CAS  Google Scholar 

  45. A. Kumar, M. Kumar, V. Bhatt, S. Mukherjee, S. Kumar, H. Sharma, M.K. Yadav, S. Tomar, J.H. Yun, R.K. Choubey, Highly responsive and low-cost ultraviolet sensor based on ZnS/p-Si heterojunction grown by chemical bath deposition". Sens. Actuators A 331, 112988 (2021)

    Article  CAS  Google Scholar 

  46. A. Kumar, D. Pednekar, S. Mukherjee, R.K. Choubey, Effect of deposition time and complexing agents on hierarchical nanoflake-structured CdS thin films. J. Mater. Sci.: Mater. Electron. 31, 17055 (2020)

    CAS  Google Scholar 

  47. Sh. Li, Sh. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, G. Eda, Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 1, 60 (2015)

    Article  Google Scholar 

  48. Y. Wang, X. Zhao, Z.-H. Liu, Few-layer WS2 nanosheets with oxygenincorporated defect-sulphur entrapped by a hierarchical N, S co-doped graphene network towards advanced long-term lithium storage performances. RSC Adv. 10, 7134 (2020)

    Article  CAS  Google Scholar 

  49. J. Zhou, J. Lin, X. Huang, Y. Zhou, Y. Chen, J. Xia, H. Wang, Y. Xie, H. Yu, J. Lei, D. Wu, F. Liu, Q. Fu, Q. Zeng, C.H. Hsu, C. Yang, L. Lu, T. Yu, Z. Shen, H. Lin, B.I. Yakobson, Q. Liu, K. Suenaga, G. Liu, Z. Liu, A library of atomically thin metal chalcogenides. Nature 556, 355 (2018)

    Article  CAS  Google Scholar 

  50. S. Cai, W. Zhao, A. Zafar, Z. Wu, Y. Chen, Photoluminescence characterization of the grain boundary thermal stability in chemical vapor deposition grown WS2. Mater. Res. Express. 4, 106202 (2017)

    Article  Google Scholar 

  51. M.S. Kim, S.J. Yun, Y. Lee, C. Seo, G.H. Han, K.K. Kim, Y.H. Lee, J. Kim, Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano 10, 2399 (2016)

    Article  CAS  Google Scholar 

  52. P. Wang, S. Luo, L. Boyle, H. Zeng, S. Huang, Controlled fractal growth of transition metal dichalcogenides. Nanoscale 11, 17065 (2019)

    Article  CAS  Google Scholar 

  53. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754 (2013)

    Article  CAS  Google Scholar 

  54. T.A. Witten Jr., L.M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400 (1981)

    Article  CAS  Google Scholar 

  55. R.A. Govind, J.H. Warner, D. Blankschtein, M.S. Strano, Generalized mechanistic model for the chemical vapor deposition of 2D transition metal dichalcogenide monolayers. ACS Nano 10, 4330 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of China through Grant Nos. 61775214 and 61601433, Natural Science Foundation of Chongqing, China under Grant cstc2019jcyj-zdxmX0003 and Nos. cstc2019jcyj-msxmX0387, Project of Chongqing talents under the grant number of CQYC202002064, and Youth Innovation Promotion Association CAS.

Funding

This work was supported in part by the National Nature Science Foundation of China through Grant Nos. 61775214, Natural Science Foundation of Chongqing, China under grant cstc2019jcyj-zdxmX0003 and Nos. cstc2019jcyj-msxmX0387, Project of Chongqing talents under the grant number of CQYC202002064, and Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Contributions

HZ conceived, leaded, designed, and administrated the whole work. GZ performed the experimental work and drafted the first version of manuscript. CW supported for the material synthesizing experiments, supplemented the XPS and XRD experiments, and drafted the first revision of the manuscript. BY finished the TEM and SEM tests. YZ supported for the data analysis. DZ supported the PL and Raman measurements. XS supported the collection of the whole experimental data and discussed the whole work. SC supported the preparation of the materials synthesis. JS and ZX supported the technique discussion.

Corresponding authors

Correspondence to Xuan Shi or Hongquan Zhao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Wang, C., Yan, B. et al. Synthesis of centimeter-scale WS2 membrane by chemical vapor deposition. J Mater Sci: Mater Electron 33, 22560–22572 (2022). https://doi.org/10.1007/s10854-022-09034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09034-7

Navigation