Skip to main content
Log in

Linear and nonlinear optical response of sulfur-deficient nanocrystallite WS2 thin films

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multilayered-to-bulk-like films were deposited by pulsed laser deposition at various argon gas deposition pressure where a significant amount of sulfur deficiency was observed. All films showed high atomic disorder and corresponding lattice distortion attributed to the large-scale sulfur deficiency. Instead of continuous film, huge sulfur deficiency created a mixed state of metallic tungsten and WS2 nanocrystals of sizes 4–8 nm throughout the films. The as-deposited WS2 films showed a dramatic shift in linear optical response, with the behavior resembling that of quantum dots. A significantly large reverse saturation absorption and positive nonlinear refraction response was observed in all the films, as measured by the open- and closed-aperture Z-scan experiment under He–Ne laser at 632.8 nm. In addition, third-order nonlinear optical susceptibility of the thin films was found to be of the order of 10−2 esu as measured from Z-scan experiment. The anomalously high nonlinear optical response of the film was attributed to the continuous-wave laser-induced thermal nonlinearity dominance over optical nonlinearity. Optical limiting was also observed in the films where optical limiting thresholds were found to increase with an increase in nonlinear absorption coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Gan X, Shiue R-J, Gao Y, Meric I, Heinz TF, Shepard K, Hone J, Assefa S, Englund D (2013) Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics 7(11):883–887

    Article  CAS  Google Scholar 

  2. Shelke NT, Karche B (2017) Ultraviolet photosensor based on few layered reduced graphene oxide nanosheets. Appl Surf Sci 418:374–379

    Article  CAS  Google Scholar 

  3. Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F (2011) 2D materials: to graphene and beyond. Nanoscale 3(1):20–30

    Article  CAS  Google Scholar 

  4. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4):2898–2926

    Article  CAS  Google Scholar 

  5. Beshkova M, Hultman L, Yakimova R (2016) Device applications of epitaxial graphene on silicon carbide. Vacuum 128:186–197

    Article  CAS  Google Scholar 

  6. Wang G, Dang S, Zhang P, Xiao S, Wang C, Zhong M (2017) Hybrid density functional study on the photocatalytic properties of AlN/MoSe2, AlN/WS2, and AlN/WSe2 heterostructures. J Phys D 51(2):025109

    Article  Google Scholar 

  7. Liu X, Hu J, Yue C, Della Fera N, Ling Y, Mao Z, Wei J (2014) High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 8(10):10396–10402

    Article  CAS  Google Scholar 

  8. Elías AL, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R, Feng S, Long AD, Hayashi T, Kim YA, Endo M (2013) Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. ACS Nano 7(6):5235–5242

    Article  Google Scholar 

  9. Ovchinnikov D, Allain A, Huang Y-S, Dumcenco D, Kis A (2014) Electrical transport properties of single-layer WS2. ACS Nano 8(8):8174–8181

    Article  CAS  Google Scholar 

  10. Iqbal MW, Iqbal MZ, Khan MF, Shehzad MA, Seo Y, Park JH, Hwang C, Eom J (2015) High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci Rep 5:10699

    Article  CAS  Google Scholar 

  11. Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C (2017) Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 9(19):6246–6253

    Article  CAS  Google Scholar 

  12. Lan C, Zhou Z, Zhou Z, Li C, Shu L, Shen L, Li D, Dong R, Yip S, Ho JC (2018) Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res 11(6):3371–3384

    Article  CAS  Google Scholar 

  13. Ratha S, Rout CS (2013) Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl Mater Interfaces 5(21):11427–11433

    Article  CAS  Google Scholar 

  14. Godin K, Kang K, Fu S, Yang E-H (2016) Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates. J Phys D 49(32):325304

    Article  Google Scholar 

  15. Walck S, Zabinski J, Donley M, Bultman J (1993) Evolution of surface topography in pulsed-laser-deposited thin films of MoS2. Surf Coat Technol 62(1–3):412–416

    Article  CAS  Google Scholar 

  16. Bruncko J, Šutta P, Netrvalová M, Michalka M, Vincze A, Kovac J (2017) Comparative study of ZnO thin film prepared by pulsed laser deposition—comparison of influence of different ablative lasers. Vacuum 138:184–190

    Article  CAS  Google Scholar 

  17. Fominski VY, Grigoriev S, Romanov R, Volosova M, Demin M (2015) Chemical composition, structure and light reflectance of W–Se and W–Se–C films prepared by pulsed laser deposition in rare and reactive buffer gases. Vacuum 119:19–29

    Article  CAS  Google Scholar 

  18. Zhu B, Sun X, Zhao X, Su F, Li G, Wu X, Wu J, Wu R, Liu J (2008) The effects of substrate temperature on the structure and properties of ZnO films prepared by pulsed laser deposition. Vacuum 82(5):495–500

    Article  CAS  Google Scholar 

  19. Debelo N, Dejene F, Roro K, Pricilla M, Oliphant C (2016) The effect of argon gas pressure on structural, morphological and photoluminescence properties of pulsed laser deposited KY3F10:Ho3+ thin films. Appl Phys A 122(6):619

    Article  Google Scholar 

  20. Dey PP, Khare A (2017) Stoichiometry-dependent linear and nonlinear optical properties of PLD SiOx thin films. J Alloys Compd 706:370–376

    Article  CAS  Google Scholar 

  21. Yao J, Zheng Z, Shao J, Yang G (2015) Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale 7(36):14974–14981

    Article  CAS  Google Scholar 

  22. Loh TA, Chua DH, Wee AT (2015) One-step synthesis of few-layer WS2 by pulsed laser deposition. Sci Rep 5:18116

    Article  CAS  Google Scholar 

  23. Loh TA, Chua DH (2015) Origin of hybrid 1T- and 2H-WS2 ultrathin layers by pulsed laser deposition. J Phys Chem C 119(49):27496–27504

    Article  CAS  Google Scholar 

  24. Yang Z, Hao J (2016) Progress in pulsed laser deposited two-dimensional layered materials for device applications. J Mater Chem C 4(38):8859–8878

    Article  CAS  Google Scholar 

  25. Schenato M, Ricardo CLA, Scardi P, Edla R, Miotello A, Orlandi M, Morrish R (2016) Effect of annealing and nanostructuring on pulsed laser deposited WS2 for HER catalysis. Appl Catal A 510:156–160

    Article  CAS  Google Scholar 

  26. Torres-Torres C, Perea-López N, Elías AL, Gutiérrez HR, Cullen DA, Berkdemir A, López-Urías F, Terrones H, Terrones M (2016) Third order nonlinear optical response exhibited by mono-and few-layers of WS2. 2D Mater 3(2):021005

    Article  Google Scholar 

  27. Zheng X, Zhang Y, Chen R, Xu Z, Jiang T (2015) Z-scan measurement of the nonlinear refractive index of monolayer WS2. Opt Exp 23(12):15616–15623

    Article  CAS  Google Scholar 

  28. Dey PP, Khare A (2017) Nonlinear optical and optical limiting response of PLD nc-Si thin films. J Mater Chem C 5(46):12211–12220

    Article  CAS  Google Scholar 

  29. Liang G, Tao L, Tsang YH, Zeng L, Liu X, Li J, Qu J, Wen Q (2019) Optical limiting properties of a few-layer MoS2/PMMA composite under excitation of ultrafast laser pulses. J Mater Chem C 7(3):495–502

    Article  CAS  Google Scholar 

  30. Chen T-H, Lin C-Y, Lin Y-H, Chi Y-C, Cheng C-H, Luo Z, Lin G-R (2016) MoS2 nano-flake doped polyvinyl alcohol enabling polarized soliton mode-locking of a fiber laser. J Mater Chem C 4(40):9454–9459

    Article  CAS  Google Scholar 

  31. Friberg S, Smith P (1987) Nonlinear optical glasses for ultrafast optical switches. IEEE J Quantum Electron 23(12):2089–2094

    Article  Google Scholar 

  32. Weber M, Milam D, Smith W (1978) Nonlinear refractive index of glasses and crystals. Opt Eng 17(5):175463

    Article  Google Scholar 

  33. Owyoung A (1973) Ellipse rotation studies in laser host materials. IEEE J Quantum Electron 9(11):1064–1069

    Article  CAS  Google Scholar 

  34. Sheik-Bahae M, Said AA, Van Stryland EW (1989) High-sensitivity, single-beam n2 measurements. Opt Lett 14(17):955–957

    Article  CAS  Google Scholar 

  35. Berkdemir A, Gutiérrez HR, Botello-Méndez AR, Perea-López N, Elías AL, Chia C-I, Wang B, Crespi VH, López-Urías F, Charlier J-C (2013) Identification of individual and few layers of WS2 using Raman spectroscopy. Sci Rep 3:1755

    Article  Google Scholar 

  36. Zhu Q, Chu X, Zhang Z, Dai W-L, Fan K (2013) A novel green process for the synthesis of glutaraldehyde by WS2@ HMS material with aqueous H2O2. RSC Adv 3(6):1744–1747

    Article  CAS  Google Scholar 

  37. Acsente T, Negrea RF, Nistor LC, Logofatu C, Matei E, Birjega R, Grisolia C, Dinescu G (2015) Synthesis of flower-like tungsten nanoparticles by magnetron sputtering combined with gas aggregation. Eur Phys J D 69(6):161

    Article  Google Scholar 

  38. Lu M, Chien C (1990) Structural and magnetic properties of Fe–W alloys. J Appl Phys 67(9):5787–5789

    Article  CAS  Google Scholar 

  39. Zheng D, Wu Y-p, Li Z-y, Cai Z-b (2017) Tribological properties of WS2/graphene nanocomposites as lubricating oil additives. RSC Adv 7(23):14060–14068

    Article  CAS  Google Scholar 

  40. Zabinski J, Donley M, Prasad S, McDevitt N (1994) Synthesis and characterization of tungsten disulphide films grown by pulsed-laser deposition. J Mater Sci 29(18):4834–4839. https://doi.org/10.1007/BF00356530

    Article  CAS  Google Scholar 

  41. Alfihed S, Hossain M, Alharbi A, Alyamani A, Alharbi FH (2013) PLD grown polycrystalline tungsten disulphide (WS2) films. J Mater 2013

  42. Pradhan G, Sharma AK (2019) Temperature controlled 1T/2H phase ratio modulation in mono-and a few layered MoS2 films. Appl Surf Sci 479:1236–1245

    Article  CAS  Google Scholar 

  43. Liu Y, Xu G, Song C, Weng W, Du P, Han G (2007) Modification on Forouhi and Bloomer model for the optical properties of amorphous silicon thin films. Thin Solid Films 515(7–8):3910–3913

    Article  CAS  Google Scholar 

  44. McGahan WA, Makovicka T, Hale J, Woollam JA (1994) Modified Forouhi and Bloomer dispersion model for the optical constants of amorphous hydrogenated carbon thin films. Thin Solid Films 253(1–2):57–61

    Article  CAS  Google Scholar 

  45. Sundari ST (2005) Forouhi–Bloomer analysis to study amorphization in Si. J Non-Cryst Solids 351(52–54):3866–3869

    Article  CAS  Google Scholar 

  46. Bayat A, Saievar-Iranizad E (2017) Synthesis of blue photoluminescent WS2 quantum dots via ultrasonic cavitation. J Lumin 185:236–240

    Article  CAS  Google Scholar 

  47. Yan Y, Zhang C, Gu W, Ding C, Li X, Xian Y (2016) Facile synthesis of water-soluble WS2 quantum dots for turn-on fluorescent measurement of lipoic acid. J Phys Chem C 120(22):12170–12177

    Article  CAS  Google Scholar 

  48. Ahn C, Lee J, Kim HU, Bark H, Jeon M, Ryu GH, Lee Z, Yeom GY, Kim K, Jung J (2015) Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. Adv Mater 27(35):5223–5229

    Article  CAS  Google Scholar 

  49. Kumar I, Khare A (2016) Optical nonlinearity in nanostructured carbon thin films fabricated by pulsed laser deposition technique. Thin Solid Films 611:56–61

    Article  CAS  Google Scholar 

  50. Bharti GP, Khare A (2016) Structural and linear and nonlinear optical properties of Zn1−xAlxO (0 ≤ x ≤ 0.10) thin films fabricated via pulsed laser deposition technique. Opt Mater Exp 6(6):2063–2080

    Article  CAS  Google Scholar 

  51. Kesarwani R, Khare A (2018) Surface plasmon resonance and nonlinear optical behavior of pulsed laser-deposited semitransparent nanostructured copper thin films. Appl Phys B 124(6):116

    Article  Google Scholar 

  52. Dong N, Li Y, Zhang S, McEvoy N, Zhang X, Cui Y, Zhang L, Duesberg GS, Wang J (2016) Dispersion of nonlinear refractive index in layered WS2 and WSe2 semiconductor films induced by two-photon absorption. Opt Lett 41(17):3936–3939

    Article  CAS  Google Scholar 

  53. Bayesteh S, Mortazavi SZ, Reyhani A (2018) Investigation on nonlinear optical properties of MoS2 nanoflakes grown on silicon and quartz substrates. J Phys D 51(19):195302

    Article  Google Scholar 

  54. Dey PP, Khare A (2016) Effect of substrate temperature on structural and linear and nonlinear optical properties of nanostructured PLD a-SiC thin films. Mater Res Bull 84:105–117

    Article  CAS  Google Scholar 

  55. Rumaner L, Tazawa T, Ohuchi F (1994) Compositional change of (0001) WS2 surfaces induced by ion beam bombardment with energies between 100 and 1500 eV. J Vac Sci Technol 12(4):2451–2456

    Article  CAS  Google Scholar 

  56. Li D-H, Zheng H, Wang Z-Y, Zhang R-J, Zhang H, Zheng Y-X, Wang S-Y, Zhang DW, Chen L-Y (2017) Dielectric functions and critical points of crystalline WS2 ultrathin films with tunable thickness. Phys Chem Chem Phys 19(19):12022–12031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CIF, IIT Guwahati for micro-Raman, FETEM, AFM, FESEM and spectroscopic ellipsometer facilities. The authors also acknowledge department of Physics, IIT Guwahati, for XRD and UV–Vis facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwini Kumar Sharma.

Ethics declarations

Conflict of interest

The author(s) declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, G., Sharma, A.K. Linear and nonlinear optical response of sulfur-deficient nanocrystallite WS2 thin films. J Mater Sci 54, 14809–14824 (2019). https://doi.org/10.1007/s10853-019-03986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03986-8

Navigation