Skip to main content

Advertisement

Log in

Study the characterization and acetone sensing behaviour of CuO-doped SnO2–TiO2 nanocomposite at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gas detected with nanosized oxide materials attracts consideration due to its promising capability of identifying different poisonous gases in atmosphere. In this study, the Cu-doped SnO2–TiO2 nanostructures were synthesized by co-precipitation and hydrothermal method using stannic chloride, titanium isopropoxide and copper nitrate as precursors. Structural characterization revealed that the items correspond to nanostructures of Cu particles deposited on SnO2–TiO2 surface. The characterizations studies of hybrid nanocomposites were determined by X-ray diffractrogram, scanning electron microscopy, FTIR and UV–Vis spectroscopy analyses. Optimized nanocomposite was fabricated into high sensitive gas thick film to sense gas molecules. The prepared sensor device using the films exhibits higher responses (sensitivities) to reducing group of gases. The improved sensitivity of this nanocomposite propagates the gas diffusivity of the sensing film comprising Cu-doped SnO2–TiO2. This sensing film will also increase the sensor response due to its catalytic and electrical sensitization effects of Cu and titanium oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. P.W. Allen, H.J.M. Bowen, L.E. Sutton, O. Bastiansen, Trans. Faraday Soc. 48, 991 (1952)

    Article  CAS  Google Scholar 

  2. J.M. Freeman, E.H. Kossoff, A.L. Hartman, The ketogenic diet: one decade later. Pediatrics 119(3), 535–543 (2007)

    Article  Google Scholar 

  3. A. Rubini, J.S. Volek, K.A. Grimaldi, Eur. J. Clin. Nutr. 67, 789–796 (2013)

    Article  Google Scholar 

  4. A. Tiwari, S. Li, Polym. J. 41, 726–732 (2009)

    Article  CAS  Google Scholar 

  5. A. Tiwari, M. Prabaharan, R.R. Pandey, S. Li, J. Inorg. Organo Met. Polym. 20, 380–386 (2010)

    Article  CAS  Google Scholar 

  6. P.G. Choi, N. Izu, N. Shirahata, Y. Masuda, Sens. Actuators B Chem. 296, 26655 (2019)

    Google Scholar 

  7. J. Li, P. Tang, J. Zhang, Y. Feng, R. Luo, A. Chen, D. Li, Ind. Eng. Chem. Res. 55(12), 3588–3595 (2016)

    Article  CAS  Google Scholar 

  8. H. Yu, S. Wang, C. Xiao, B. Xiao, P. Wang, Z. Li, M. Zhang, CrystEngComm 17(23), 4316–4324 (2015)

    Article  CAS  Google Scholar 

  9. N. Hongsith, E. Wongrat, T. Kerdcharoen, S. Choopun, Sens. Actuators B 144, 67–72 (2010)

    Article  CAS  Google Scholar 

  10. P. Hu, G. Du, W. Zhou, J. Cui, J. Lin, H. Liu, D. Liu, J. Wang, S. Chen, ACS Appl. Mater. Interfaces 2, 3263–3269 (2010)

    Article  CAS  Google Scholar 

  11. L. Shi, H. Lin, Langmuir 27, 3977–3981 (2011)

    Article  CAS  Google Scholar 

  12. X. Ding, D. Zeng, C. Xie, Sens. Actuators B 149, 336–344 (2010)

    Article  CAS  Google Scholar 

  13. X. Xue, Z. Chen, C. Ma, L. Xing, Y. Chen, Y. Wang, T. Wang, J. Phys. Chem. C 114, 3968–3972 (2010)

    Article  CAS  Google Scholar 

  14. K. Lokesh, G. Kavitha, E. Manikandan, G.K. Mani, K. Kaviyarasu, J.B.B. Rayappan, M. Maaza, IEEE Sens. J. 16(8), 2477–2483 (2016)

    Article  CAS  Google Scholar 

  15. P. Scherrer, Bestimmung der Grösse undder innerenStruktur von KolloidteilchenmittelsRöntgenstrahlen, Nachr. Ges. Wiss. Göttingen 2698 (1918)

  16. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11102 (1978)

  17. V. Kumar, S. Som, J.H. Neethling, E. Olivier, O.M. Ntwaeaborwa, H.C. Swart, Nanotechnology 25, 135701 (2014)

    Article  Google Scholar 

  18. H. Ohno, Y. Kanzawa, Y. Yamane, Dental Mater. J. 2, 59–67 (1983)

    Article  CAS  Google Scholar 

  19. Q. Tian, W. Wu, L. Sun, S. Yang, M. Lei, J. Zhou, Y. Liu, X. Xiao, F. Ren, C. Jiang, V.A.L. Roy, ACS Appl. Mater. Interfaces 6, 13088 (2014)

    Article  CAS  Google Scholar 

  20. C.C. Chusuei, M.A. Brookshier, D.W. Goodman, Langmuir 15, 2806 (1999)

    Article  CAS  Google Scholar 

  21. A. Chowdhuri, S.K. Singh, K. Sreenivas, V. Gupta, Sens. Actuators B 145, 155–166 (2010)

    Article  CAS  Google Scholar 

  22. W. Tian, X. Liu, W. Yu, Appl. Sci. 8(7), 1118 (2018)

    Article  Google Scholar 

  23. N. Alizadeh, H. Jamalabadi, F. Tavoli, IEEE Sens. J. 20(1), 5–31 (2019)

    Article  Google Scholar 

  24. V. Saasa, M. Mokwena, B. Dhonge, E. Manikandan, J. Kennedy, P.P. Murmu, B. Mwakikunga, Sens. Transducers 195(12), 9 (2015)

    CAS  Google Scholar 

  25. E. Manikandan, V. Murugan, G. Kavitha, P. Babu, M. Maaza, Mater. Lett. 131, 225–228 (2014)

    Article  CAS  Google Scholar 

  26. F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, G. Henshaw, Nanotechnology 22(33), 335702 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. K. Jeyadeepan, Assistant Professor (Research), Multifunctional Materials & Devices Lab, SASTRA University, Thanjavur, Tamilnadu, for providing gas-sensing setup Lab.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [V.V.], [Dr. P.A.] and [Dr. D.G.]. The first draft of the manuscript was written by [V.V.] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to V. Vidhya.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidhya, V., Anbarasu, P. & Geetha, D. Study the characterization and acetone sensing behaviour of CuO-doped SnO2–TiO2 nanocomposite at room temperature. J Mater Sci: Mater Electron 33, 24059–24067 (2022). https://doi.org/10.1007/s10854-022-09029-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09029-4

Navigation