Skip to main content
Log in

Magnetic, dielectric and nonlinear optical absorption studies of nickel–zinc ferrite with Mg2+ doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ni0.5−xMgxZn0.5Fe2O4 (x =  0.00, 0.05, 0.10 and 0.15) samples were prepared by the sol–gel method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, vibrating sample magnetometer and LCR meter. XRD results confirmed that the samples were free of impurities. The grain size continued to increase with the doping of Mg2+ ions. According to the VSM analysis of Ni0.5−xMgxZn0.5Fe2O4, the saturation magnetization (Ms) of the samples can increase to 94.80 emu/g by Mg2+ doping. In addition, the Ni0.5−xMgxZn0.5Fe2O4 samples also showed dielectric behavior that can be explained by polarization theory. Moreover, ZnFe2O4 sample showed favorable nonlinear optical absorption characteristics due to the internal magnetic interactions and the distribution of cations in the sublattices. These results indicated that the samples involved in this work have potential applications in high-density recording media and optical limiting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Adnan, M. Usman, M.A. Akram, S. Javed, S. Ali, I. Ahmad, M. Islam, Study of magnetic and dielectric properties of ZnFe2O4/CoCr2O4 nanocomposites produced using sol-gel and hydrothermal processes. J. Alloy Compd. 865, 158953 (2021)

    Article  CAS  Google Scholar 

  2. K. Patil, S. Kadam, P. Lokhande, S. Balgude, P. More, The effects of cobalt and magnesium co-doping on the structural and magnetic properties of ZnFe2O4 synthesized using a sonochemical process. Solid State Commun. 337, 114435 (2021)

    Article  CAS  Google Scholar 

  3. B.N. Sahu, S.C. Sahoo, N. Venkataramani, S. Prasad, R. Krishnan, Observation of extraordinarily large magnetization in CoFe2O4/ZnFe2O4 bilayers. J. Magn. Magn. Mater. 523, 167629 (2021)

    Article  CAS  Google Scholar 

  4. K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, K. Kaviyarasu, R.J. Ramalingam, M.A. Munusamy, A. AlArfaj, Effect of Cd2+ concentration on ZnFe2O4 nanoparticles on the structural, optical and magnetic properties. Optik 135, 190–199 (2017)

    Article  CAS  Google Scholar 

  5. D.G. Chen, X.G. Tang, J.B. Wu, W. Zhang, Q.X. Liu, Y.P. Jiang, Effect of grain size on the magnetic properties of superparamagnetic Ni0.5Zn0.5Fe2O4 nanoparticles by co-precipitation process. J. Magn. Magn. Mater. 323, 1717–1721 (2011)

    Article  CAS  Google Scholar 

  6. I. Ahmada, T. Abbas, M.U. Islam, A. Maqsood, Study of cation distribution for Cu-Co nanoferrites synthesized by the sol-gel method. Ceram. Int. 39, 6735–6741 (2013)

    Article  Google Scholar 

  7. A. Hussain, T. Abbas, S.B. Niazi, Preparation of Ni1 – xMnxFe2O4 ferrites by sol-gel method and study of their cation distribution. Ceram. Int. 39, 1221–1225 (2013)

    Article  CAS  Google Scholar 

  8. H. Kavas, A. Baykal, M.S. Toprak, Y. Köseoḡlu, M. Sertkol, B. Aktas, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. J. Alloy Compd. 479, 49–55 (2009)

    Article  CAS  Google Scholar 

  9. M. Houshiar, L. Jamilpanah, Effect of Cu dopant on the structural, magnetic and electrical properties of Ni-Zn ferrites. Mater. Res. Bull. 98, 213–218 (2018)

    Article  CAS  Google Scholar 

  10. S.E. Shirsath, B.G. Toksha, R.H. Kadam, S.M. Patange, D.R. Mane, G.S. Jangam, A. Ghasemi, Doping effect of Mn2+ on the magnetic behavior in Ni-Zn ferrite nanoparticles prepared by sol-gel auto-combustion. J. Phys. Chem. Solids 71, 1669–1675 (2010)

    Article  CAS  Google Scholar 

  11. Z. Peng, X. Fu, H. Ge, Z. Fu, C. Wang, L. Qi, H. Miao, Effect of Pr3+ doping on magnetic and dielectric properties of Ni-Zn ferrites by ‘‘one-step synthesis’’. J. Magn. Magn. Mater. 323, 2513–2518 (2011)

    Article  CAS  Google Scholar 

  12. M. Saravanan, T.C. Sabari, Girisun, Nonlinear optical absorption and optical limiting properties of cadmium ferrite. Mater. Chem. Phys. 160, 413e419 (2015)

    Article  Google Scholar 

  13. M. Saravanan, T.C. Sabari, Girisun, Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures. Appl. Surf. Sci. 392, 904–911 (2017)

    Article  Google Scholar 

  14. J.J. Thomas, S. Krishnan, K. Sridharan, R. Philip, N. Kalarikkal, A comparative study on the optical limiting properties of different nano spinel ferrites with Z-scan technique. Mater. Res. Bull. 47, 1855–1860 (2012)

    Article  CAS  Google Scholar 

  15. S. Yuvaraj, N. Manikandan, G. Vinitha, Effect of Zn2+ ions on third order nonlinear optical behavior and power limiting properties of manganese ferrite nanoparticles. Photonic Nanostruct. 45, 100922 (2021)

    Article  Google Scholar 

  16. N. Rezlescu, C. Doroftei, E. Rezlescu, P.D. Popa, Structure and humidity sensitive electrical properties of the Sn4+ and/or Mo6+ substituted Mg ferrite. Sens. Actuat B-Chem 115, 589–595 (2006)

    Article  CAS  Google Scholar 

  17. L. Lva, P. Cheng, Y. Wang, L. Xu, B. Zhang, C. Lv, J. Ma, Y. Zhang, Sb-doped three-dimensional ZnFe2O4 macroporous spheres for N-butanol chemiresistive gas sensors. Sens. Actuat B-Chem 320, 128384 (2020)

    Article  Google Scholar 

  18. Y. Xiang, Y. Huang, B. Xiao, X. Wu, G. Zhang, Magnetic yolk-shell structure of ZnFe2O4 nanoparticles for enhanced visible light photo-Fenton degradation towards antibiotics and mechanism study. Appl. Surf. Sci. 513, 145820 (2020)

    Article  CAS  Google Scholar 

  19. S. Chinnapaiyan, T. Chen, S. Chen, Z.A. Alothman, M.A. Ali, S.M. Wabaidur, F. Al-Hemaid, S. Lee, W. Chang, Ultrasonic-assisted preparation and characterization of magnetic ZnFe2O4/ g-C3N4 nanomaterial and their applications towards electrocatalytic reduction of 4-nitrophenol. Ultrason. Sonochem 68, 105071 (2020)

    Article  CAS  Google Scholar 

  20. T. Tanaka, R. Shimazu, H. Nagai, M. Tada, T. Nakagawa, A. Sandhu, H. Handa, M. Abe, Preparation of spherical and uniform-sized ferrite nanoparticles with diameters between 50 and 150 nm for biomedical applications. J. Magn. Magn. Mater. 321, 1417–1420 (2009)

    Article  CAS  Google Scholar 

  21. A. Ghasemi, M.R. Loghman-Estarki, S. Torkian, M. Tavoosi, The microstructure and magnetic behavior of spark plasma sintered iron/nickel zinc ferrite nanocomposite synthesized by the complex sol-gel method. Compos. Part. B-Eng 175, 107179 (2019)

    Article  CAS  Google Scholar 

  22. N. Aggarwal, S.B. Narang, Magnetic characterization of Nickel-Zinc spinel ferrites along with their microwave characterization in Ku band. J. Magn. Magn. Mater. 513, 167052 (2020)

    Article  CAS  Google Scholar 

  23. A. Ahangari, S. Raygan, A. Ataie, Capabilities of nickel zinc ferrite and its nanocomposite with CNT for adsorption of arsenic (V) ions from wastewater. J. Environ. Chem. Eng. 7, 103493 (2019)

    Article  CAS  Google Scholar 

  24. F.A. Hezam, N.O. Khalifa, O. Nur, M.A. Mustafa, Synthesis and magnetic properties of Ni0.5MgxZn0.5–xFe2O4 (0.0 ≤ x ≤ 0.5) nanocrystalline spinel ferrites. Mater. Chem. Phys. 257, 123770 (2021)

    Article  CAS  Google Scholar 

  25. M. Naeem, N.A. Shah, I.H. Gul, A. Maqsood, Structural, electrical and magnetic characterization of Ni-Mg spinel ferrites. J. Alloy Compd. 487, 739–743 (2009)

    Article  CAS  Google Scholar 

  26. N. Singh, A. Agarwal, S. Sanghi, P. Singh, Effect of magnesium substitution on dielectric and magnetic properties of Ni-Zn ferrite. Phys. B 406, 687–692 (2011)

    Article  CAS  Google Scholar 

  27. S.B. Somvanshi, M.V. Khedkar, P.B. Kharat, K.M. Jadhav, Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): Thermal, structural, spectral, optical and physisorption analysis. Ceram. Int. 46, 8640–8650 (2020)

    Article  CAS  Google Scholar 

  28. P.K. Roy, J. Bera, Effect of Mg substitution on electromagnetic properties of (Ni0.25Cu0.20Zn0.55)Fe2O4 ferrite prepared by auto combustion method. J. Magn. Magn. Mater. 298, 38–42 (2006)

    Article  CAS  Google Scholar 

  29. M. Salman, M. Khan, S. Saleem, S. Ali, F. Hussain, R. Muhammad, A. Khesro, Y. Abdullah, Ling, Non-stoichiometric zinc ferrite nanostructures: dielectric, magnetic, optical and photoelectrochemical properties. Mater. Today Commun. 28, 102662 (2021)

    Article  CAS  Google Scholar 

  30. A. Aslam, A.U. Rehman, N. Amin, M.A.u. Nabi, Q.u.a Abdullah, N.A. Morley, M.I. Arshad, H.T. Ali, M. Yusuf, Z. Latif, K. Mehmood, Lanthanum doped Zn0.5Co0.5LaxFe2–xO4 spinel ferrites synthesized via coprecipitation route to evaluate structural, vibrational, electrical, optical, dielectric, and thermoelectric properties. J. Phys. Chem. Solids 154, 110080 (2021)

    Article  CAS  Google Scholar 

  31. M.A. Khan, M.Q.u. Zaman, A. Majeed, M.N. Akhtar, W. Abbas, Structural, spectral, dielectric and magnetic properties of Sr2CuxNi2 – xFe28 – xCrxO46 (0 ≤ x ≥ 0.5) ferrites synthesized via micro-emulsion route. Mater. Chem. Phys. 259, 124066 (2021)

    Article  CAS  Google Scholar 

  32. G. Sarveena, A. Kumar, R.K. Kumar, K.M. Kotnala, M. Batoo, Singh, Investigation of structural, magnetic and Mössbauer properties of Co2+ and Cu2+ substituted Ni-Zn nanoferrites. Ceram. Int. 42, 4993–5000 (2016)

    Article  CAS  Google Scholar 

  33. M. Kavanloui, B. Hashemi, Effect of B2O3 on the densification and magnetic properties of Li-Zn ferrite. Mater Des. 32, 4257–4261 (2011)

    Article  CAS  Google Scholar 

  34. C. Liu, Z. Lan, X. Jiang, Z. Yu, K. Sun, L. Li, P. Liu, Effects of sintering temperature and Bi2O3 content on microstructure and magnetic properties of LiZn ferrites. J. Magn. Magn. Mater. 320, 1335–1339 (2008)

    Article  CAS  Google Scholar 

  35. L. Sun, Q. Ni, E. Cao, Y. Zhang, W. Hao, L. Ju, Effect of Zn2+ doping on the structural, magnetic and dielectric properties of MnFe2O4 prepared by the sol-gel method. J. Mater. Sci-Mater El 29, 29:5356–5362 (2018)

    Article  CAS  Google Scholar 

  36. M.A. Dar, V. Verma, S.P. Gairola, W.A. Siddiqui, R.K. Singh, R.K. Kotnala, Low dielectric loss of Mg doped Ni-Cu-Zn nano-ferrites for power applications. Appl. Surf. Sci. 258, 5342–5347 (2012)

    Article  Google Scholar 

  37. J. Kurian, M.J. Mathew, Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method. J. Magn. Magn. Mater. 451, 121–130 (2018)

    Article  CAS  Google Scholar 

  38. C. He, B. Zou, Z. Wu, Y. Nie, Third order optical nonlinearities in ZnFe2O4 nanocrystals. Opt. Commun. 281, 851–854 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (No. 11804006), Natural Science Foundation of Shanxi Province (Nos. 201901D111126 and 201901D111117).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

FM and JH performed the experiment; LS contributed significantly to analysis and manuscript preparation; FM performed the data analyses and wrote the manuscript; EC and YZ contributed to the conception of the study; LJ helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Li Sun.

Ethics declarations

Competing interests

The author(s) declare(s) that they have no competing interests in this work.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors. In this experiment, we did not collect any samples of human and animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Sun, L., Han, J. et al. Magnetic, dielectric and nonlinear optical absorption studies of nickel–zinc ferrite with Mg2+ doping. J Mater Sci: Mater Electron 33, 22410–22420 (2022). https://doi.org/10.1007/s10854-022-09018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09018-7

Navigation