Skip to main content
Log in

Effect of Zn2+ doping on the structural, magnetic and dielectric properties of MnFe2O4 prepared by the sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mn1−xZnxFe2O4 (x = 0.2–0.8) ferrite samples were successfully prepared by the sol–gel method. X-ray diffraction study reveals that single cubic spinel phase was formed in Mn1−xZnxFe2O4 samples. The SEM micrographs revealed that the microstructures change significantly with different Zn2+ doping concentration and sintering temperature while the grain size grow up to 9.48 μm for Mn0.6Zn0.4Fe2O4 sample sintered at 1100 °C. Further, the dielectric and magnetic measurements indicated that both Zn2+ doping and sintering temperature could affect both electrical and magnetic parameters such as dielectric constant and saturation magnetization in a great manner. The Mn0.6Zn0.4Fe2O4 sample sintered at 1100 °C for 8 h is found to show the largest Ms value (77.30 emu/g) in this work. These results indicate that Zn2+ doping or sintering temperature can adjust the microstructures, dielectric and magnetic properties of Mn1−xZnxFe2O4 ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O. Kaman, J. Kuličková, V. Herynek, J. Koktan, M. Maryško, T. Dědourková, K. Knížek, Z. Jirák, Preparation of Mn–Zn ferrite nanoparticles and their silica-coated clusters: magnetic properties and transverse relaxivity. J. Magn. Magn. Mater. 427, 251–257 (2017)

    Article  CAS  Google Scholar 

  2. H. Zhang, F. Hua, X. Zhang, Q. Suo, H. Peng, X. Wang, Effect of PEG6000 on magnetic properties of the Mn–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 439, 245–250 (2017)

    Article  CAS  Google Scholar 

  3. U.R. Ghodake, R.C. Kambale, S.S. Suryavanshi, Effect of Mn2+ substitution on structural, electrical transport and dielectric properties of Mg–Zn ferrites. Ceram. Int. 43, 1129–1134 (2017)

    Article  CAS  Google Scholar 

  4. K. Jalaiah, K. Vijaya Babu, Structural, magnetic and electrical properties of nickel doped Mn–Zn spinel ferrite synthesized by sol–gel method. J. Magn. Magn. Mater. 423, 275–280 (2017)

    Article  CAS  Google Scholar 

  5. S. Thota, S. Kashyap, S. Sharma, V.R. Reddy, Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: role of Mn. J. Phys. Chem. Solids. 91, 136–144 (2016)

    Article  CAS  Google Scholar 

  6. J. Smit, H.P. Wijn, J. Ferrites, (1959)

  7. G. Blasse, Crystal chemistry and some magnetic properties of mixed metal oxides with spinel structure, philips. Res. Rep. Suppl. 3, 1–139 (1964)

    CAS  Google Scholar 

  8. J. Smit, Ion distribution in Spinels. Solid State Commun. 6, 745–746 (1968)

    Article  CAS  Google Scholar 

  9. A. Zapata, G. Herrera, Effect of zinc concentration on the microstructure and relaxation frequency of Mn–Zn ferrites synthesized by solid state reaction. Ceram. Int. 39, 7853–7860 (2013)

    Article  CAS  Google Scholar 

  10. M. BenAli, K. ElMaalam, H. ElMoussaoui, O. Mounkachi, M. Hamedoun, R. Masrour, E.K. Hlil, A. Benyoussef, Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. J. Magn. Magn. Mater. 398, 20–25 (2016)

    Article  CAS  Google Scholar 

  11. S. Gyergyek, D. Makovec, A. Kodre, I. Arcon, M. Jagodic, M. Drofenik, Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles. J. Nanopart. Res. 12, 1263–1273 (2010)

    Article  CAS  Google Scholar 

  12. Z. Klencsár, G. Tolnai, L. Korecz, I. Sajó, P. Németh, J. Osán, S. Mészáros, E. Kuzmann, Cation distribution and related properties of MnxZn1–xFe2O4 spinel Nanoparticles. Solid State Sci. 24, 90–100 (2013)

    Article  Google Scholar 

  13. M. Li, X. Liu, T. Xu, Y. Nie, H. Li, C. Zhang, Synthesis and characterization of nanosized MnZn ferrites via a modified hydrothermal method. J. Magn. Magn. Mater. 439, 228–235 (2017)

    Article  CAS  Google Scholar 

  14. H. Anwar, A. Maqsood, Comparison of structural and electrical properties of Co2+doped Mn–Zn soft nano ferrites prepared via coprecipitation and hydrothermal methods. Mater. Res. Bull. 49, 426–433 (2014)

    Article  CAS  Google Scholar 

  15. Gh..R. Amiri, M.H. Yousefi, M.R. Abolhassani, S. Manouchehri, M.H. Keshavarz, S. Fatahian, Magnetic properties and microwave absorption in Ni-Zn and Mn–Zn ferrite nanoparticles synthesized by low-temperature solid-state reaction. J. Magn. Magn. Mater. 323, 730–734 (2011)

    Article  CAS  Google Scholar 

  16. R. Arulmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadevan, Mn–Zn ferrite nanoparticles for ferrofluid preparation: study on thermal–magnetic properties. J. Magn. Magn. Mater. 298, 83–94 (2006)

    Article  CAS  Google Scholar 

  17. J. Azadmanjiri, Preparation of MnZn ferrite nanoparticles from chemical sol-gel combustion method and the magnetic properties after sintering. J. Non-cryst. Solids 353, 4170–4173 (2007)

    Article  CAS  Google Scholar 

  18. B. Ji, C. Tian, Q. Zhang, D. Ji, J. Yang, J. Xie, J. Si, Magnetic properties of samarium and gadolinium co-doping Mn–Zn ferrites obtained by sol-gel auto-combustion method. J. Rare Earth 34, 1017–1023 (2016)

    Article  CAS  Google Scholar 

  19. M. Zare, B. Niroumand, A. Maleki, A. Reza, Allafchian, Sol-gel synthesis of amorphous SiOC nanoparticles from BS290 silicone precursor. Ceram. Int. 43, 12898–12903 (2017)

    Article  CAS  Google Scholar 

  20. A. Gossard, F. Grasland, X. Le Goff, A. Grandjean, G. Toquer, Control of the nanocrystalline zirconia structure through a colloidal sol–gel process. Solid State Sci. 55, 21–28 (2016)

    Article  CAS  Google Scholar 

  21. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153 (2002)

    Article  CAS  Google Scholar 

  22. S. Rhouma, S. Saîd, C. Autret, S. De Almeida-Didry, M. El Amrani, A. Megriche, Comparative studies of pure, Sr-doped, Ni-doped and co-doped CaCu3Ti4O12 ceramics: Enhancement of dielectric properties. J. Alloys Compd. 717, 121–126 (2017)

    Article  CAS  Google Scholar 

  23. V. Manikandan, A. Vanitha, E. Ranjith Kumar, S. Kavita, Influence of sintering temperature on structural, dielectric and magnetic properties of Li substituted CuFe2O4 nanoparticles. J. Magn. Magn. Mater. 426, 11–17 (2017)

    Article  CAS  Google Scholar 

  24. R. Peelamedu, C. Grimes, D. Agrawal, R. Roy, Ultralow dielectric constant nickel–zinc ferrites using microwave sintering. J. Mater. Res. 18, 2292–2295 (2003)

    Article  CAS  Google Scholar 

  25. J.S. Ghodake, R.C. Kambale, S.V. Salvi, S.R. Sawant, S.S. Suryavanshi, Electric properties of Co substituted Ni–Zn ferrites. J. Alloy. Compd. 486, 830–834.20 (2009)

    Article  CAS  Google Scholar 

  26. L. Sun, Z. Wang, Y. Shi, E. Cao, Y. Zhang, H. Peng, L. Ju, Sol-gel synthesized pure CaCu3Ti4O12 with very low dielectric loss and high dielectric constant. Ceram. Int. 41, 13486–13492 (2015)

    Article  CAS  Google Scholar 

  27. S.B. Patil, R.P. Patil, J.S. Ghodake, B.K. Chougule, Temperature and frequency dependent dielectric properties of Ni–Mg–Zn–Co ferrites. J. Magn. Magn. Mater. 350, 179–182 (2014)

    Article  CAS  Google Scholar 

  28. C. Sujatha, K.V. Reddy, K.S. Babu, A.R. Reddy, K.H. Rao, Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram. Int. 39, 3077–3086.21 (2013)

    Article  CAS  Google Scholar 

  29. M.A. Gabal, R.S. Al-Luhaibi, Y.M. Al Angari, Effect of Zn-substitution on the structural and magnetic properties of Mn–Zn ferrites synthesized from spent Zn–C batteries. J. Magn. Magn. Mater. 348, 107–112 (2013)

    Article  CAS  Google Scholar 

  30. P. Hu, H. Yang, D. Pan, H. Wang, J. Tian, S. Zhang, X. Wang, A. Volinsky, Heat treatment effects on microstructure and magnetic properties of Mn–Zn ferrite powders. J. Magn. Magn. Mater. 322, 173–177 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (Nos. 51602214, 11604234 and 11447189), Natural Science Foundation of Shanxi Province (Nos. 2015021026 and 201601D202010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Guo, J., Ni, Q. et al. Effect of Zn2+ doping on the structural, magnetic and dielectric properties of MnFe2O4 prepared by the sol–gel method. J Mater Sci: Mater Electron 29, 5356–5362 (2018). https://doi.org/10.1007/s10854-017-8501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8501-2

Navigation