Skip to main content
Log in

Structural, dielectric, and reflection characterization of 0.96 ZnxMg1−xTiO3–0.04 SrTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The impact of Zn substitution on structural, dielectric, and reflection properties of the pure MgTiO3 and 0.96 ZnxMg1−xTiO3–0.04 SrTiO3, x = 0.00, 0.05, and 0.075 ceramics was investigated. These ceramics were prepared by the sol–gel technique. X-ray diffraction examination has confirmed the formation of MgTiO3 as a major phase in all the prepared samples. Rietveld refinements disclosed that the MgTiO3 phase had trigonal symmetry with space group R−3. Raman spectroscopy confirmed the presence of 10 Raman-active modes in all the compositions. These modes were shifted toward higher wavenumber with the increase in Zn concentration from x = 0.00 to x = 0.075. Dielectric characterization showed that for a similar increase of Zn concentration, the relative permittivity (εr) increased from 14.75 to 20.42, loss tangent (tan δ) decreased from 1.15 × 10–2 to 1.12 × 10–3, and temperature coefficient of resonant frequency (τf) increased from − 50.34 to 3.56 ppm/°C at a frequency of 100 kHz. The best combination of dielectric properties was observed for composition 0.96 Zn0.05Mg0.95TiO3–0.04 SrTiO3 (95 MZST) with εr = 17.43, tan δ = 0.97 × 10–3 GHz, and τf = 3.11 ppm/°C at a frequency of 100 kHz and sintering temperature of 1200 °C. In the Ku-band (12.4 to 18.0 GHz), the study of reflection properties suggested that all the considered samples possess reflection of 90% or higher with an effective bandwidth of 4.20 GHz. While in the K-band (18.0 to 26.5 GHz), the results obtained from reflection analysis showed that the composition 95 MZST at sample thicknesses of 2.0 mm has more than 90% reflection with an effective bandwidth of 4.70 GHz. Owing to low-to-medium εr, low tan δ, near-zero τf, and good reflection properties, the prepared 0.96 Zn0.05Mg0.95TiO3–0.04 SrTiO3 composition can be used for 5G wireless communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Yes.

Code availability

No.

References

  1. E.S. Choi, Y.H. Lee, and S.G. Bae, in Proc. Int. Symp. Electr. Insul. Mater. (2001).

  2. K. Wada, K.I. Kakimoto, H. Ohsato, J. Eur. Ceram. Soc. 26, 1899 (2006)

    Article  CAS  Google Scholar 

  3. K. Wada, K.I. Kakimoto, H. Ohsato, J. Eur. Ceram. Soc. 23, 2535 (2003)

    Article  CAS  Google Scholar 

  4. Y. Sakai, T. Futakuchi, and M. Adachi, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 46, 6920 (2007).

  5. N. Kumada, A. Miura, T. Takei, I.B. Adilina, S. Shimazu, J. Ceram. Soc. Jpn. 121, 74 (2013)

    Article  CAS  Google Scholar 

  6. M.K. Suresh, J.K. Thomas, H. Sreemoolanadhan, C.N. George, A. John, S. Solomon, P.R.S. Wariar, J. Koshy, Mater. Res. Bull. 45, 761 (2010)

    Article  CAS  Google Scholar 

  7. V.M. Ferreira, J.L. Baptista, Mater. Res. Bull. 29, 1017 (1994)

    Article  CAS  Google Scholar 

  8. A. Salomon, C. Voigt, O. Fabrichnaya, C.G. Aneziris, D. Rafaja, Adv. Eng. Mater. (2017). https://doi.org/10.1002/adem.201700106

    Article  Google Scholar 

  9. H. Jantunen, R. Rautioaho, A. Uusimäki, S. Leppävuori, J. Eur. Ceram. Soc. 20, 2331 (2000)

    Article  CAS  Google Scholar 

  10. H. Zhou, J. Huang, X. Tan, K. Wang, W. Sun, H. Ruan, J. Mater. Sci. Mater. Electron. 28, 17009 (2017)

    Article  CAS  Google Scholar 

  11. C.L. Huang, C.L. Pan, S.J. Shium, Mater. Chem. Phys. 78, 111 (2003)

    Article  Google Scholar 

  12. C.L. Huang, J.Y. Chen, G.S. Huang, J. Alloys Compd. 499, 48 (2010)

    Article  CAS  Google Scholar 

  13. S.H. Shim, B.G. Choi, J.W. Yoon, S.H. Kim, B.C. Kim, and K.B. Shim, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 44, 5073 (2005).

  14. X. M. Chen, L. Li, and X. Q. Liu, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 99, 255 (2003).

  15. K. Miwa, I. Kagomiya, H. Ohsato, H. Sakai, Y. Maeda, J. Eur. Ceram. Soc. 27, 4287 (2007)

    Article  CAS  Google Scholar 

  16. C.L. Huang, S.S. Liu, S.H. Chen, J. Alloys Compd. 480, 794 (2009)

    Article  CAS  Google Scholar 

  17. H. Su, S. Wu, Mater. Lett. 59, 2337 (2005)

    Article  CAS  Google Scholar 

  18. C.L. Huang, J.L. Hou, C.L. Pan, C.Y. Huang, C.W. Peng, C.H. Wei, Y.H. Huang, J. Alloys Compd. 450, 359 (2008)

    Article  CAS  Google Scholar 

  19. L. He, H. Yu, M. Zeng, E. Li, J. Liu, S. Zhang, J. Electroceram. 40, 360 (2018)

    Article  CAS  Google Scholar 

  20. A. Manan, D.N. Khan, A. Ullah, J. Mater. Sci. Mater. Electron. 26, 2066 (2015)

    Article  CAS  Google Scholar 

  21. C.L. Huang, Y.B. Chen, C.F. Tasi, J. Alloys Compd. 454, 454 (2008)

    Article  CAS  Google Scholar 

  22. Y. Tohdo, K. Kakimoto, H. Ohsato, H. Yamada, T. Okawa, J. Eur. Ceram. Soc. 26, 2039 (2006)

    Article  CAS  Google Scholar 

  23. C.H. Shen, C.L. Huang, Int. J. Appl. Ceram. Technol. 7, 207 (2010)

    Article  CAS  Google Scholar 

  24. J.Y. Chen, C.L. Huang, Mater. Lett. 64, 2585 (2010)

    Article  CAS  Google Scholar 

  25. C.L. Huang, J.Y. Chen, C.C. Liang, J. Alloys Compd. 478, 554 (2009)

    Article  CAS  Google Scholar 

  26. M. Tuhkala, J. Juuti, and H. Jantunen, J. Appl. Phys. 115, 184101 (2014)

  27. C.L. Huang, K.H. Chiang, J. Alloys Compd. 431, 326 (2007)

    Article  CAS  Google Scholar 

  28. R.P. Liferovich, R.H. Mitchell, Acta Crystallogr. Sect. B Struct. Sci. 60, 496 (2004)

    Article  Google Scholar 

  29. H.J. Jo, J.S. Kim, E.S. Kim, Ceram. Int. 41, S530 (2015)

    Article  CAS  Google Scholar 

  30. C.L. Huang, J.J. Wang, Y.P. Chang, J. Am. Ceram. Soc. 90, 858 (2007)

    Article  CAS  Google Scholar 

  31. T. Santhosh Kumar, P. Gogoi, A. Perumal, P. Sharma, D. Pamu, J. Am. Ceram. Soc. 97, 1054 (2014)

    Article  CAS  Google Scholar 

  32. K.P. Surendran, A. Wu, P.M. Vilarinho, V.M. Ferreira, J. Appl. Phys. 107, 114112 (2010)

    Article  Google Scholar 

  33. A. Sakai, G. Anzou, A. Kikuchi, O. Seri, Ferroelectrics 512, 45 (2017)

    Article  CAS  Google Scholar 

  34. K. Wang, H. Zhou, W. Sun, X. Chen, H. Ruan, J. Mater. Sci. Mater. Electron. 29, 2001 (2018)

    Article  CAS  Google Scholar 

  35. W.W. Cho, K.I. Kakimoto, and H. Ohsato, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 43, 6221 (2004).

  36. C.L. Huang, C.H. Shen, and C.L. Pan, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 145, 91 (2007).

  37. X. Xue, H. Yu, G. Xu, J. Mater. Sci. Mater. Electron. 24, 1287 (2013)

    Article  CAS  Google Scholar 

  38. V. Shanker, S. Kumar, T. Surendar, Bull. Mater. Sci. 35, 1165 (2012)

    Article  CAS  Google Scholar 

  39. T.S. Kumar, A. Kumar, A.R. James, D. Pamu, J. Aust. Ceram. Soc. 48, 96 (2012)

    CAS  Google Scholar 

  40. C.H. Wang, X.P. Jing, W. Feng, J. Lu, J. Appl. Phys. 104, 034112 (2008)

    Article  Google Scholar 

  41. R.A. Mondal, B.S. Murty, V.R.K. Murthy, Curr. Appl. Phys. 14, 1727 (2014)

    Article  Google Scholar 

  42. H. Xu, G. Zhang, Y. Wang, M. Ning, B. Ouyang, Y. Zhao, Y. Huang, P. Liu, Nano-Micro Lett. 14, 102 (2022)

    Article  Google Scholar 

  43. R.D. Shannon, J. Appl. Phys. 73, 348 (1993)

    Article  CAS  Google Scholar 

  44. K. Sharma, S. Bahel, J. Mater. Sci. Mater. Electron. 32, 27216 (2021)

    Article  CAS  Google Scholar 

  45. Y. Da Ho, C.L. Huang, J. Am. Ceram. Soc. 96, 2065 (2013)

    Article  CAS  Google Scholar 

  46. T. Shimada, K.I. Kakimoto, H. Ohsato, J. Eur. Ceram. Soc. 25, 2901 (2005)

    Article  CAS  Google Scholar 

  47. J. Zhang, Z. Yue, Y. Zhou, X. Zhang, L. Li, J. Am. Ceram. Soc. 98, 1548 (2015)

    Article  CAS  Google Scholar 

  48. R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang, M. Ma, J. Ye, J. Colloid Interfaces Sci. 609, 224 (2022)

    Article  CAS  Google Scholar 

  49. P. Liu, Y. Wang, G. Zhang, R.Z. Ying Huang, X. Liu, X. Zhang, R. Che, Adv. Funct. Mater. 32, 2202588 (2022)

    Article  CAS  Google Scholar 

  50. S. Solgi, M.S. Seyed Dorraji, S.F. Hosseini, M.H. Rasoulifard, I. Hajimiri, A. Amani-Ghadim, Sci. Rep. 11, 1 (2021)

    Article  Google Scholar 

Download references

Funding

This work is financially supported by the Ministry of Electronics and Information Technology (MeitY), Government of India. [Grant No. MEITY-PHD-2742].

Author information

Authors and Affiliations

Authors

Contributions

KS contributed to synthesis and characterization, software, data analysis, and writing. HK and SB involved in review and edit and supervised the whole manuscript…

Corresponding author

Correspondence to Shalini Bahel.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Kaur, H. & Bahel, S. Structural, dielectric, and reflection characterization of 0.96 ZnxMg1−xTiO3–0.04 SrTiO3 ceramics. J Mater Sci: Mater Electron 33, 22374–22387 (2022). https://doi.org/10.1007/s10854-022-09015-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09015-w

Navigation