Skip to main content

Advertisement

Log in

Photo-supercapacitor based on quantum dot-sensitized solar cells and active carbon supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photo-supercapacitors, devices that integrate solar cells and supercapacitors, can convert and store solar energy simultaneously, which is ideal for utilizing solar energy to reduce the consume of fossil fuels. Herein, we designed and fabricated a photo-supercapacitor based on a CdS/CdSe quantum dots co-sensitized solar cell and an active carbon-based supercapacitor with a shared electrode and separate aqueous electrolytes. The device achieved a 2.66% overall efficiency when being photo-charged and galvanostatic discharged at 1 mA/cm2, with an areal capacitance of 132.83 mF/cm2 and an energy density of 23.9 mJ/cm2. The device also showed good stability, remaining 76.7% of its initial overall efficiency after 100 cycles. The properties make the device suitable for miniaturized and self-powered electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Kannan, D. Vakeesan, Renew. Sustain. Energy Rev. 62, 1092 (2016). https://doi.org/10.1016/j.rser.2016.05.022

    Article  Google Scholar 

  2. D. Schmidt, M.D. Hager, U.S. Schubert, Adv. Energy Mater. (2016). https://doi.org/10.1002/aenm.201500369

    Article  Google Scholar 

  3. D.M. Chapin, C.S. Fuller, G.L. Pearson, J. Appl. Phys. 25(5), 676 (1954). https://doi.org/10.1063/1.1721711

    Article  CAS  Google Scholar 

  4. A. Gurung, K. Chen, R. Khan, S.S. Abdulkarim, G. Varnekar, R. Pathak, R. Naderi, Q. Qiao, Adv. Energy Mater. 7(11), 1602105 (2017). https://doi.org/10.1002/aenm.201602105

    Article  CAS  Google Scholar 

  5. C. Xu, X. Zhang, L. Duan, X. Zhang, X. Li, W. Lu, Nanoscale 12(2), 530 (2020). https://doi.org/10.1039/c9nr09224b

    Article  CAS  Google Scholar 

  6. K. Namsheer, C.S. Rout, J. Mater. Chem. A 9(13), 8248 (2021). https://doi.org/10.1039/d1ta00444a

    Article  CAS  Google Scholar 

  7. A. Scalia, F. Bella, A. Lamberti, S. Bianco, C. Gerbaldi, E. Tresso, C.F. Pirri, J. Power Sources 359, 311 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.072

    Article  CAS  Google Scholar 

  8. R. Liu, Y. Liu, H. Zou, T. Song, B. Sun, Nano Res. 10(5), 1545 (2017). https://doi.org/10.1007/s12274-017-1450-5

    Article  CAS  Google Scholar 

  9. J. Liang, G. Zhu, C. Wang, P. Zhao, Y. Wang, Y. Hu, L. Ma, Z. Tie, J. Liu, Z. Jin, Nano Energy 52, 239 (2018). https://doi.org/10.1016/j.nanoen.2018.07.060

    Article  CAS  Google Scholar 

  10. C. Shi, H. Dong, R. Zhu, H. Li, Y. Sun, D. Xu, Q. Zhao, D. Yu, Nano Energy 13, 670 (2015). https://doi.org/10.1016/j.nanoen.2015.03.032

    Article  CAS  Google Scholar 

  11. M. Mohammadian, S. Rashid-Nadimi, Z. Peimanifard, J. Power Sources 426, 40 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.101

    Article  CAS  Google Scholar 

  12. P. Wang, X. Chen, G. Sun, C. Wang, J. Luo, L. Yang, J. Lv, Y. Yao, W. Luo, Z. Zou, Angew. Chem. Int. Ed. Engl. 60(3), 1390 (2021). https://doi.org/10.1002/anie.202011930

    Article  CAS  Google Scholar 

  13. Y. Qu, Z. Tang, L. Duan, X. Li, X. Zhang, W. Lü, J. Electrochem. Soc. 166(15), A3564 (2019). https://doi.org/10.1149/2.0171915jes

    Article  CAS  Google Scholar 

  14. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  15. T. Miyasaka, T.N. Murakami, Appl. Phys. Lett. 85(17), 3932 (2004). https://doi.org/10.1063/1.1810630

    Article  CAS  Google Scholar 

  16. Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, S. Jiang, J. Mater. Sci. 56(1), 173 (2020). https://doi.org/10.1007/s10853-020-05157-6

    Article  CAS  Google Scholar 

  17. R. Dubey, V. Guruviah, Ionics 25(4), 1419 (2019). https://doi.org/10.1007/s11581-019-02874-0

    Article  CAS  Google Scholar 

  18. Y. Yang, L. Fan, N.D. Pham, D. Yao, T. Wang, Z. Wang, H. Wang, J. Power Sources (2020). https://doi.org/10.1016/j.jpowsour.2020.229046

    Article  Google Scholar 

  19. K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin, H.T. Nguyen, J. Wen, M. Wei, V. Yeddu, M.I. Saidaminov, Y. Gao, X. Luo, Y. Wang, H. Gao, C. Zhang, J. Xu, J. Zhu, E.H. Sargent, H. Tan, Nat. Energy 5(11), 870 (2020). https://doi.org/10.1038/s41560-020-00705-5

    Article  CAS  Google Scholar 

  20. J. Liang, G. Zhu, Z. Lu, P. Zhao, C. Wang, Y. Ma, Z. Xu, Y. Wang, Y. Hu, L. Ma, T. Chen, Z. Tie, J. Liu, Z. Jin, J. Mater. Chem. A 6(5), 2047 (2018). https://doi.org/10.1039/c7ta09099d

    Article  CAS  Google Scholar 

  21. T. Berestok, C. Diestel, N. Ortlieb, J. Buettner, J. Matthews, P.S.C. Schulze, J.C. Goldschmidt, S.W. Glunz, A. Fischer, Solar RRL (2021). https://doi.org/10.1002/solr.202100662

    Article  Google Scholar 

  22. Y. Li, C. Liang, G. Wang, J. Li, S. Chen, S. Yang, G. Xing, H. Pan, Photon. Res. (2020). https://doi.org/10.1364/prj.398529

    Article  Google Scholar 

  23. Z. Pan, H. Rao, I. Mora-Sero, J. Bisquert, X. Zhong, Chem. Soc. Rev. 47(20), 7659 (2018). https://doi.org/10.1039/c8cs00431e

    Article  CAS  Google Scholar 

  24. W. Li, X. Yang, L. Wang, X. Zhang, X. Li, W. Lü, Superlattices Microstruct. (2020). https://doi.org/10.1016/j.spmi.2020.106730

    Article  Google Scholar 

  25. H. Song, Y. Lin, Z. Zhang, H. Rao, W. Wang, Y. Fang, Z. Pan, X. Zhong, J Am Chem Soc. 143(12), 4790 (2021). https://doi.org/10.1021/jacs.1c01214

    Article  CAS  Google Scholar 

  26. K.-J. Huang, J.-Z. Zhang, K. Xing, Electrochim. Acta 149, 28 (2014). https://doi.org/10.1016/j.electacta.2014.10.079

    Article  CAS  Google Scholar 

  27. H. Heydari, S.E. Moosavifard, S. Elyasi, M. Shahraki, Appl. Surf. Sci. 394, 425 (2017). https://doi.org/10.1016/j.apsusc.2016.10.138

    Article  CAS  Google Scholar 

  28. Y. Jiang, J. Liu, Energy Environ. Mater. 2(1), 30 (2019). https://doi.org/10.1002/eem2.12028

    Article  Google Scholar 

  29. L. Fan, K. Lin, J. Wang, R. Ma, B. Lu, Adv Mater. 30(20), e1800804 (2018). https://doi.org/10.1002/adma.201800804

    Article  CAS  Google Scholar 

  30. J. Lindmayer, J. Allison, Solar cells. 29(2–3), 151 (1990). https://doi.org/10.1016/0379-6787(90)90023-X

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (Nos. 62004014, 62004015, 61625501, 62027822), Department of Science and technology of Jilin Province (20210101077JC).

Author information

Authors and Affiliations

Authors

Contributions

RZ: conceptualization, methodology, material preparation, device fabrication and writing. HL: data curation. ZH: data analysis. LW: funding acquisition. WL: review and editing of the manuscript, funding acquisition. FL: review and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Lü or Fenghua Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Data availability

Research data are not shared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, R., Li, H., Hu, Z. et al. Photo-supercapacitor based on quantum dot-sensitized solar cells and active carbon supercapacitors. J Mater Sci: Mater Electron 33, 22309–22318 (2022). https://doi.org/10.1007/s10854-022-09010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09010-1

Navigation