Skip to main content
Log in

Compact spoof surface plasmon polariton waveguide with asymmetric serrations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Spoof surface plasmon polaritons (SSPPs) at microwave band can be implemented on thin conductor layer with periodic patterns. However, the lateral width of SSPP waveguides tends to be large at low frequencies, which is not conducive to device miniaturization. In this paper, a compact SSPP waveguide structure based on asymmetric serration conductor units is proposed to further reduce the transverse size of device. Specifically, the cutoff frequency of this SSPP waveguide is reduced by lengthening the lateral conductor strips at asymmetric serration unit tops. Since the variation range of top strip length is large in this case, the adjustable range of the waveguide passband is increased. For the waveguide prototype with an overall width of 13.0 mm, the cutoff frequency can be effectively regulated in the range of 7.2–11.3 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. W.L. Barnes, Surface plasmon–polariton length scales: a route to sub-wavelength optics. J. Opt. A 8, S87 (2006)

    Article  Google Scholar 

  2. C.R. Williams, S.R. Andrews, S.A. Maier, A.I. Fernandez-Dominguez, L. Martinmoreno, F.J. Garcia-Vidal, Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat. Photonics 2, 175 (2008)

    Article  CAS  Google Scholar 

  3. F.J. Garcia-Vidal, L. Martin-Moreno, J.B. Pendry, Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A 7, S97 (2005)

    Article  Google Scholar 

  4. J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces. Science 305, 847 (2004)

    Article  CAS  Google Scholar 

  5. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, C.Y. Wang, Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves. Opt. Express 14, 13021 (2006)

    Article  Google Scholar 

  6. Q. Gan, Z. Fu, Y.J. Ding, F.J. Bartoli, Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys. Rev. Lett. 100, 256803 (2008)

    Article  Google Scholar 

  7. A. Rusina, M. Durach, M.I. Stockman, Theory of spoof plasmons in real metals. Appl. Phys. A 100, 375 (2010)

    Article  CAS  Google Scholar 

  8. X. Shen, T.J. Cui, D. Martin-Cano, F.J. Garcia-Vidal, Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl Acad. Sci. USA 110, 40 (2013)

    Article  CAS  Google Scholar 

  9. H.C. Zhang, Q. Zhang, J.F. Liu, W. Tang, Y. Fan, T.J. Cui, Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies. Sci. Rep. 6, 23396 (2016)

    Article  Google Scholar 

  10. H.C. Zhang, T.J. Cui, Q. Zhang, Y. Fan, X. Fu, Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons. ACS Photonics 2, 1333 (2015)

    Article  CAS  Google Scholar 

  11. A.P. Hibbins, B.R. Evans, J.R. Sambles, Experimental verification of designer surface plasmons. Science 308, 670 (2005)

    Article  CAS  Google Scholar 

  12. Y.J. Zhou, Q.X. Xiao, Electronically controlled rejections of spoof surface plasmons polaritons. J. Appl. Phys. 121, 123109 (2017)

    Article  Google Scholar 

  13. H.C. Zhang, T.J. Cui, J. Xu, W. Tang, J.F. Liu, Real-time controls of designer surface plasmon polaritons using programmable plasmonic metamaterial. Adv. Mater. Technol. 2, 1600202 (2017)

    Article  Google Scholar 

  14. J. Xu, H.C. Zhang, W. Tang, J. Guo, C. Qian, W. Li, Transmission-spectrum-controllable spoof surface plasmon polaritons using tunable metamaterial particles. Appl. Phys. Lett. 108, 191906 (2016)

    Article  Google Scholar 

  15. X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, T. Jiang, Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures. Opt. Express 22, 20107 (2014)

    Article  Google Scholar 

  16. J.Y. Yin, J. Ren, H.C. Zhang, B.C. Pan, T.J. Cui, Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Sci. Rep. 5, 8165 (2015)

    Article  CAS  Google Scholar 

  17. B.C. Pan, J. Zhao, Z. Liao, H.C. Zhang, T.J. Cui, Multi-layer topological transmissions of spoof surface plasmon polaritons. Sci. Rep. 6, 22702 (2016)

    Article  CAS  Google Scholar 

  18. Q. Zhang, H.C. Zhang, H. Wu, T.J. Cui, A hybrid circuit for spoof surface plasmons and spatial waveguide modes to reach controllable band-pass filters. Sci. Rep. 5, 16531 (2015)

    Article  CAS  Google Scholar 

  19. X. Gao, J. Shi, H.F. Ma, W.X. Jiang, T.J. Cui, Dual-band spoof surface plasmon polaritons based on composite-periodic gratings. J. Phys. D 45, 505104 (2012)

    Article  Google Scholar 

  20. X. Shen, T.J. Cui, Planar plasmonic metamaterial on a thin film with nearly zero thickness. Appl. Phys. Lett. 102, 211909 (2013)

    Article  Google Scholar 

  21. H. Xiang, Y. Meng, Q. Zhang, F.F. Qin, J.J. Xiao, D. Han, W. Wen, Spoof surface plasmon polaritons on ultrathin metal strips with tapered grooves. Opt. Commun. 356, 59 (2015)

    Article  CAS  Google Scholar 

  22. Y. Yang, X. Shen, P. Zhao, H.C. Zhang, T.J. Cui, Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwave frequencies. Opt. Express 23, 7031 (2015)

    Article  CAS  Google Scholar 

  23. Y.Y. Yang, P. Gong, W.D. Ma, R. Hao, X.Y. Fang, Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes. Chin. Phys. B 30, 067803 (2021)

    Article  CAS  Google Scholar 

  24. H.F. Ma, X. Shen, Q. Cheng, W.X. Jiang, T.J. Cui, Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev. 8, 146 (2014)

    Article  CAS  Google Scholar 

  25. L. Ye, Y. Xiao, Y. Liu, L. Zhang, G. Cai, Q.H. Liu, Strongly confined spoof surface plasmon polaritons waveguiding enabled by planar staggered plasmonic waveguides. Sci. Rep. 6, 38528 (2016)

    Article  CAS  Google Scholar 

  26. X. Gao, L. Zhou, Z. Liao, H.F. Ma, T.J. Cui, An ultra-wideband surface plasmonic filter in microwave frequency. Appl. Phys. Lett. 104, 191603 (2014)

    Article  Google Scholar 

  27. Z. Liao, J. Zhao, B.C. Pan, X.P. Shen, T.J. Cui, Broadband transition between microstrip line and conformal surface plasmon waveguide. J. Phys. D 47, 315103 (2014)

    Article  Google Scholar 

  28. A. Kianinejad, Z.N. Chen, C. Qiu, Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans. Microw. Theory Tech. 63, 1817 (2015)

    Article  Google Scholar 

  29. X. Wan, J.Y. Yin, H.C. Zhang, T.J. Cui, Dynamic excitation of spoof surface plasmon polaritons. Appl. Phys. Lett. 105, 083502 (2014)

    Article  Google Scholar 

  30. W. Li, Z. Qin, Y. Wang, L. Ye, Y. Liu, Spoof surface plasmonic waveguide and its band-rejection filter based on H-shaped slot units. J. Phys. D 52, 365303 (2019)

    Article  CAS  Google Scholar 

  31. Y.H. Jia, P. Gong, S.L. Li, W.D. Ma, X.Y. Fang, Y.Y. Yang, M.S. Cao, Effects of hydroxyl groups and hydrogen passivation on the structure, electrical and optical properties of silicon carbide nanowires. Phys. Lett. A 384, 126106 (2020)

    Article  CAS  Google Scholar 

  32. X. Tang, Q. Zhang, S. Hu, A. Kandwal, T. Guo, Y. Chen, Capacitor-loaded spoof surface plasmon for flexible dispersion control and high-selectivity filtering. IEEE Microw. Wirel. Compon. Lett. 27, 806 (2017)

    Article  Google Scholar 

  33. M.A. Kats, D. Woolf, R. Blanchard, N. Yu, F. Capasso, Spoof plasmon analogue of metal–insulator–metal waveguides. Opt. Express 19, 14860 (2011)

    Article  CAS  Google Scholar 

  34. R.K. Jaiswal, N. Pandit, N.P. Pathak, Center frequency and bandwidth reconfigurable spoof surface plasmonic metamaterial band-pass filter. Plasmonics 14, 1539 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the supports from the National Natural Science Foundation of China under Grant No. 62071403.

Funding

This research is supported by the National Natural Science Foundation of China (Grant No. 62071403).

Author information

Authors and Affiliations

Authors

Contributions

All authors have the same contribute to the manuscript.

Corresponding author

Correspondence to Weiwen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, C., Xiao, Z., Li, W. et al. Compact spoof surface plasmon polariton waveguide with asymmetric serrations. J Mater Sci: Mater Electron 33, 22300–22308 (2022). https://doi.org/10.1007/s10854-022-09008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09008-9

Navigation