Skip to main content
Log in

The choice of organic acids as complexing agent affecting on the electrochemical properties of spinel LiNi0.5Mn1.5O4

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, three organic acids were, respectively, used as complexing agent to synthesize LiNi0.5Mn1.5O4 (LNMO) materials. Lactic and malic acid were applied for the first time to prepare LNMO successfully. The materials are well crystallized and show a disordered Fd3m structure. Citric acid is conducive to grain refinement and has the smallest grain size and biggest surface area among these samples. Material with citric acid presents a better stability of the coulombic efficiency exceeding 95% at 1 C rate after 500 cycles and retains more than 70% capacity retention, while lactic acid shows a fast capacity decay during the charging and discharging circulation. EIS spectra indicate that small grain size is good for the charge transfer, and LNMO with citric acid possesses the greatest DLi+ of 5.39 × 10−12 cm2 s−1, while it is two times bigger than that with malic acid and almost ten times as fast as LNMO by lactic acid. Citric acid has the optimal electrochemical performance than lactic and malic acid. Our work could provide a pretty reference for the researchers to select a special acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding authors.

References

  1. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    Article  CAS  Google Scholar 

  2. M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004)

    Article  CAS  Google Scholar 

  3. P.Y. Guan, L. Zhou, Z.L. Yu, Y.D. Sun, Y.J. Liu, F.X. Wu, Y.F. Jiang, D.W. Chu, Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. J. Energy Chem. 43, 220–235 (2020)

    Article  Google Scholar 

  4. T.F. Yi, J. Mei, Y.R. Zhu, Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O as high-voltage cathode materials for high power lithium-ion batteries. J. Power Sources 316, 85–105 (2016)

    Article  CAS  Google Scholar 

  5. L. Li, R. Zhao, D. Pan, S.H. Yi, L.F. Gao, G.J. He, H.L. Zhao, C.Y. Yu, Y. Bai, Constructing tri-functional modification for spinel LiNi0.5Mn1.5O via fast ion conductor. J. Power Sources 450, 227677 (2020)

    Article  CAS  Google Scholar 

  6. H.D. Liu, R. Kloepsch, J. Wang, M. Winter, J. Li, Truncated octahedral LiNi0.5Mn1.5O cathode material for ultralong-life lithium-ion battery: positive (100) surfaces in high-voltage spinel system. J. Power Sources 300, 430–437 (2015)

    Article  CAS  Google Scholar 

  7. C.D. Qin, Y.Y. Jiang, P.F. Yan, M.L. Sui, Revealing the minor Li-ion blocking effect of LiCoO2 surface phase transition layer. J. Power Sources 460, 228126 (2020)

    Article  CAS  Google Scholar 

  8. D. Jugović, M. Mitrić, M. Milović, N. Cvjetićanin, B. Jokić, A. Umićević, D. Uskoković, The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder. Ceram. Int. 43, 3224–3230 (2017)

    Article  Google Scholar 

  9. Y.-H. Lee, J.-Y. Mun, D.-W. Kim, J.K. Lee, W.C. Choi, Surface modification of LiNi0.5Mn1.5O4 cathodes with ZnAl2O4 by a sol–gel method for lithium ion batteries. Electrochimi. Acta. 115, 326–331 (2014)

    Article  CAS  Google Scholar 

  10. J.F. Wang, D. Chen, W. Wu, L. Wang, G.C. Liang, Effects of Na + doping on crystalline structure and electrochemical performances of LiNi0.5Mn1.5O4 cathode material. T. Nonferr. Metal. Soc. 27(10), 2239–2248 (2017)

    Article  CAS  Google Scholar 

  11. J.B. Fei, Y. Cui, X.H. Yan, W. Qi, Y. Yang, K.W. Wang, Q. He, J.B. Li, Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv. Mater. 20(3), 452–456 (2008)

    Article  Google Scholar 

  12. N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods. J. Magn. Magn. Mater. 309(1), 100–105 (2007)

    Article  CAS  Google Scholar 

  13. G.J. Li, X.Y. Luo, Y.H. Liao, H.B. Zhou, Y.M. Zhu, W.S. Li, Effect of pore structure in polymer membrane from various preparation techniques on cyclic stability of 4.9 V LiNi0.5Mn1.5O4 at elevated temperature. J. Membrane Sci. 597, 117628 (2019)

    Article  Google Scholar 

  14. N. Mokhtar, Molten salt synthesis of disordered spinel LiNi0.5Mn1.5O4 with improved electrochemical performance for Li-ion batteries. Int. J. Electrochem. 13(11), 10113–10126 (2018)

    Article  CAS  Google Scholar 

  15. X.T. Li, Z.C. Shao, Y. Zhang, W. Zhang, H.M. Shao, A facile polymeric gel route synthesis of high-voltage LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Mater. Lett. 277, 128310 (2020)

    Article  CAS  Google Scholar 

  16. O. Sha, Z. Qiao, S.L. Wang, Z.Y. Tang, H. Wang, X.H. Zhang, Q. Xu, Improvement of cycle stability at elevated temperature and high rate for LiNi0.5–xCuxMn1.5O4 cathode material after Cu substitution. Mater. Res. Bull. 48(4), 1606–1611 (2013)

    Article  CAS  Google Scholar 

  17. Y.R. Zhu, T.F. Yi, X.Y. Li, Y. Xie, S.H. Luo, Improved rate performance of LiNi0.5Mn1.5O4 as cathode of lithium-ion battery by Li0.33La0.56TiO3 coating. Mater. Lett. 239, 56–58 (2019)

    Article  CAS  Google Scholar 

  18. C. Chen, H.M. Wu, D.F. Zhou, D.H. Xu, Y. Zhou, J.B. Guo, Sol-gel synthesis of nano Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials using DL-lactic acid as chelating agent. Ceram. Int. 47, 6270–6278 (2021)

    Article  CAS  Google Scholar 

  19. T. Ogihara, Y. Azuma, K. Katayama, Synthesis and electrochemical property of LiMnO2 precursor by complexed polymerized method. J. Ceram. 107(5), 465–468 (1999)

    CAS  Google Scholar 

  20. N.D. Rosedhi, N.H. Idris, M.M. Rahman, M.F. Md Din, J.L. Wang, Disordered spinel LiNi0.5Mn1.5O4 cathode with improved rate performance for lithium-ion batteries. Electrochim. Acta. 206, 374–380 (2016)

    Article  CAS  Google Scholar 

  21. Y.L. He, J. Zhang, Q. Li, Y. Hao, J.W. Yang, L.Z. Zhang, C.L. Wang, An improved solid-state method for synthesizing LiNi0.5Mn1.5O4 cathode material for lithium ion batteries. J. Alloys Compd. 715, 304–310 (2017)

    Article  CAS  Google Scholar 

  22. N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry. Ionics. 12(2), 117–126 (2006)

    Article  CAS  Google Scholar 

  23. X.J. Lu, C. Liu, W.J. Zhu, Z.P. Lu, Y. Yang, G. Yang, Synthesis of micron-sized LiNi0.5Mn1.5O4 single crystals through in situ microemulsion/coprecipitation and characterization of their electrochemical capabilities. Powder Technol. 343, 445–453 (2019)

    Article  CAS  Google Scholar 

  24. S. Li, L.F. Lan, L. Lu, Y. Lu, S.F. Li, J. Li, C.Y. Pan, F.H. Zhao, Cerium doped LiNi0.5Mn1.5O4 composite with improved high temperature performance as a cathode material for Li-ion batteries. AIP Adv. 9(2), 025210 (2019)

    Article  Google Scholar 

  25. J.H. Lee, C. Kim, B. Kang, High electrochemical performance of high-voltage LiNi0.5Mn1.5O4 by decoupling the Ni/Mn disordering from the presence of Mn3+ ions. NPG Asia Mater. 7, e211 (2015)

    Article  CAS  Google Scholar 

  26. W. Wu, X. Qin, J.L. Guo, J.F. Wang, H.Y. Yang, L. Wang, Influence of cerium doping on structure and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials. J. Rare Earths 35(9), 887–895 (2017)

    Article  CAS  Google Scholar 

  27. B. Hai, A.K. Shukla, H. Duncan, G.Y. Chen, The effect of particle surface facets on the kinetic properties of LiNi0.5Mn1.5O4 cathode materials. J. Mater. Chem. A 1, 759 (2013)

    Article  CAS  Google Scholar 

  28. S.R.S. Prabaharan, B.S. Nasiman, S.S. Micheal, M. Massot, C. Julien, Soft-chemistry synthesis of electrochemically-active spinel LiMn2O4 for Li-ion batteries. Solid State Ionics. 112, 25–34 (1998)

    Article  CAS  Google Scholar 

  29. S.-K. Hong, S.-I. Mho, I.-H. Yeo, Y.K. Kang, D.-W. Kim, Structural and electrochemical characteristics of morphology-controlled Li[Ni0.5Mn1.5]O4 cathodes. Electrochimi. Acta. 156, 29–37 (2015)

    Article  CAS  Google Scholar 

  30. J.C. Deng, Y.L. Xu, L.L. Xiong, L. Li, X.F. Sun, Y. Zhang, Improving the fast discharge performance of high-voltage LiNi0.5Mn1.5O4 spinel by Cu2+, Al3+, Ti4+ tri-doping. J. Alloys Compd. 677, 18–26 (2016)

    Article  CAS  Google Scholar 

  31. Y.J. Xiao, J.Q. Fan, X.Y. Zhang, D.Y. Zhang, C.K. Chang, LiNi0.5Mn1.5 O4 spinel type cathode material with high reversible capacit.y Electrochim Acta 311, 170–177 (2019)

    Article  CAS  Google Scholar 

  32. F.H. Zheng, X. Ou, Q.C. Pan, X.H. Xiong, C.H. Yang, M.L. Liu, The effect of composite organic acid (citric acid & tartaric acid) on microstructure and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides. J. Power Sources 346, 31–39 (2017)

    Article  CAS  Google Scholar 

  33. H.D. Liu, J. Wang, X.F. Zhang, D. Zhou, X. Qi, B. Qiu, J.H. Fang, R. Kloepsch, G. Schomacher, Z.P. Liu, J. Li, Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS Appl. Mater. Interfaces 8, 4661–4675 (2016)

    Article  CAS  Google Scholar 

  34. H.B. Lin, Y.M. Zhang, H.B. Rong, S.W. Mai, J.N. Hu, Y.H. Liao, L.D. Xing, M.Q. Xu, X.P. Li, W.S. Li, Crystallographic facet- and size-controllable synthesis of spinel LiNi0.5Mn1.5O4 with excellent cyclic stability as cathode of high voltage lithium ion battery. J. Mater. Chem. A 2(30), 11987–11995 (2014)

    Article  CAS  Google Scholar 

  35. Y. Talyosef, B. Markovsky, G. Salitra, D. Aurbach, H.-J. Kim, S.J. Choi, The study of LiNi0.5Mn1.5O4 5-V cathodes for Li-ion batteries. J. Power Sources 146, 664–669 (2005)

    Article  CAS  Google Scholar 

  36. T.F. Yi, Y. Xie, Y.R. Zhu, R.S. Zhu, M.F. Ye, High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries. J. Power Sources 211, 59–65 (2012)

    Article  CAS  Google Scholar 

  37. Y.P. Li, Q. Zhang, T.H. Xu, D.D. Wang, LaF3 nanolayer surface modified spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. Ceram. Int. 44(4), 4058–4066 (2018)

    Article  CAS  Google Scholar 

  38. M.-C. Kim, Y.-W. Lee, T.-K. Pham, J.I. Sohn, K.-W. Park, Chemical valence electron-engineered LiNi0.4Mn1.5MtO4 (Mt = Co and Fe) cathode materials with high-performance electrochemical properties. Appl. Surf. Sci. 504, 144514 (2020)

    Article  CAS  Google Scholar 

  39. W. Wu, J.L. Guo, X. Qin, C.B. Bi, J.F. Wang, L. Wang, G.C. Liang, Enhanced electrochemical performances of LiNi0.5Mn1.5O4 spinel in half-cell and full-cell via yttrium doping. J. Alloys and Compd. 721, 721–730 (2017)

    Article  CAS  Google Scholar 

  40. M.X. Lin, L.B. Ben, Y. Sun, H. Wang, Z.Z. Yang, L. Gu, X.Q. Yu, X.Q. Yang, H.F. Zhao, R.C. Yu, M. Armand, X.J. Huang, Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle. Chem. Mater. 27, 483–493 (2014)

    Google Scholar 

  41. X.L. Cui, T.T. Geng, F.L. Zhang, N.S. Zhuang, D.N. Zhao, C.L. Li, S.Y. Li, The influence of the voltage plateau on the coulombic efficiency and capacity degradation in LiNi0.5Mn1.5O4 materials. J. Alloys Compd. 820, 153443 (2019)

    Article  Google Scholar 

  42. M. Kuenzel, G.-T. Kim, M. Zarrabeitia, S.D. Lin, A.R. Schuer, D. Geiger, U. Kaiser, D. Bresser, S. Passerini, Crystal engineering of TMPOx-coated LiNi0.5Mn1.5O4 cathodes for high-performance lithium-ion batteries. Mater. Today 39, 127–136 (2020)

    Article  CAS  Google Scholar 

  43. T.F. Yi, J. Mei, P.P. Peng, S.H. Luo, Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Compos. B Eng. 167, 566–572 (2019)

    Article  CAS  Google Scholar 

  44. Y. Yu, M.W. Xiang, J.M. Guo, C.W. Su, X.F. Liu, H.L. Bai, W. Bai, K.J. Duan, Enhancing high rate and elevated-temperature properties of Ni-Mg co-doped LiMn2O4 cathodes for Li-ion batteries. J. Colloid Interface Sci. 555, 64–71 (2019)

    Article  CAS  Google Scholar 

  45. V. Gajraj, R. Jose, C.R. Mariappan, Growth of LiNi0.5Mn1.5O4 crystals on reduced graphene oxide sheets for high energy and power density charge storage. Mater. Res. Bull. 124, 110741–110742 (2020)

    Article  Google Scholar 

  46. C. Feng, H. Li, C. Zhang et al., Synthesis and electrochemical properties of non-stoichiometric Li–Mn-spinel (Li1.02MxMn1.95O4–yFy) for lithium ion battery application. Electrochim. Acta 61, 87–93 (2012)

    Article  CAS  Google Scholar 

  47. C. Gao, H.P. Liu, S.F. Bi, S.S. Fan, X.H. Meng, Q.Y. Li, C.G. Luo, Insight into the effect of graphene coating on cycling stability of LiNi0.5Mn1.5O4: Integration of structure-stability and surface-stability. J. Materiomics 6(4), 712–722 (2020)

    Article  Google Scholar 

  48. T.F. Wei, P.P. Peng, Y.R. Ji, Y.R. Zhu, T.F. Yi, Y. Xie, Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials. J. Energy Chem. 71, 400–410 (2022)

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (52063005), Science and Technology Support Project of Guizhou Province (2021488).

Author information

Authors and Affiliations

Authors

Contributions

JS contributed to experimental ideas and scheme design, writing-original draft preparation, data curation, writing-reviewing, and editing. HW contributed to instructional support and writing-reviewing. DX contributed to writing-reviewing and experimental operation support. JG contributed to funding acquisition, provision of study materials, reagents, and materials. WY contributed to supervision and funding acquisition. FL and TC contributed to sample treatment and collecting and sorting data.

Corresponding author

Correspondence to Jianbing B. Guo.

Ethics declarations

Conflict of interest

The authors have claimed that the work reported in this article will not generate conflict of interest or economic disputes among them.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 304.7 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Wu, H., Xu, D. et al. The choice of organic acids as complexing agent affecting on the electrochemical properties of spinel LiNi0.5Mn1.5O4. J Mater Sci: Mater Electron 33, 22217–22229 (2022). https://doi.org/10.1007/s10854-022-09001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09001-2

Navigation