Skip to main content

Advertisement

Log in

Simultaneously achievement of high recoverable energy density and efficiency in sodium niobate-based ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single lead-free Na0.73Bi0.09(Nb1 − xTax)O3 (x = 0, 0.10, 0.20, 0.30, and 0.40) ceramic phases were processed via a solid-state sintering route. The phase, microstructure, dielectric, and energy storage properties of the sintered ceramics were investigated. A high εr > 1000, a recoverable energy storage density (Wrec) ~ 0.92 J/cm3 along with ultra-high efficiency of 96.33% at 127 kV was obtained for x = 0 composition at room temperature. At x = 0.10, the value of Wrec increased to ~ 1.13 J/cm3 while the efficiency slightly decreased to ~ 95.7%. Furthermore, the discharging time of x = 0.10 composition was ~ 0.12 µs. These characteristics make the x = 0.10 composition a suitable candidate material for pulsed power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. X. Luo, J. Wang, M. Dooner, J. Clarke, Appl. Energy 137, 511–536 (2015)

    Article  Google Scholar 

  2. B. Kang, G. Ceder, Nature 458, 190–193 (2009)

    Article  CAS  Google Scholar 

  3. L. Li, P. Fan, M. Wang, N. Takesue, D. Salamon, A.N. Vtyurin, Y. Zhang, H. Tan, B. Nan, Y. Lu, L. Liu, H. Zhang, J. Phys. D 54, 293001 (2021)

    Article  CAS  Google Scholar 

  4. Q. Li, F. Liu, T. Yang, M.R. Gadinski, G. Zhang, L.Q. Chen, Q. Wang, Sandwic, Proc. Natl. Acad. Sci. USA 113, 9995–10000 (2016)

    Article  CAS  Google Scholar 

  5. S.H. Liu, B. Shen, H.S. Hao, J.W. Zhai, J. Mater. Chem. C 7, 15118–15135 (2019)

    Article  CAS  Google Scholar 

  6. H. Hu, A. Liu, Y. Wan, Y. Jing, Materials 14, 3605 (2021)

    Article  CAS  Google Scholar 

  7. Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H.U. Li, E. Iagodkine, A. Haque, L.Q. Chen, T.N. Jackson, Q. Wang, Nature 523, 576–579 (2015)

    Article  CAS  Google Scholar 

  8. F. Yan, X. He, H. Bai, B. Shen, J. Zhai, J. Mater. Chem. A 9, 15827–15835 (2021)

    Article  CAS  Google Scholar 

  9. Y. Qin, F. Shang, G. Chen, J. Xu, Y. Wang, Z. Li, J. Zhai, J. Mater. Chem. A 10, 11535–11541 (2022)

    Article  CAS  Google Scholar 

  10. D. Jiang, F. Shang, G. Chen, Ceram. Intern. 47, 27142–27150 (2021)

    Article  CAS  Google Scholar 

  11. F. Luo, Y. Qin, F. Shang, G. Chen, Ceramics International, C. Press, Proof. (2022) https://doi.org/10.1016/j.ceramint.2022.07.011

  12. G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A.F.D. Zhou, D. Wang, S. Zhang, I.M. Reaney, Chem. Rev. 10, 6124–6172 (2021)

    Article  Google Scholar 

  13. J. Li, F. Li, Z. Xu, S. Zhang, Adv. Mater. 30, 1802155 (2018)

    Article  Google Scholar 

  14. G. Wang, J. Li, X. Zhang, Z. Fan, F. Yang, A. Feteira, D. Zhou, D.C. Sinclair, T. Ma, X. Tan, D. Wang, I.M. Reaney, Energy Environ. Sci. 12, 582–588 (2019)

    Article  CAS  Google Scholar 

  15. A. Manan, A. Ullah, M. Ali Khan, A.S. Ahmad, Y. Iqbal, I. Qazi, M.U. Rehman, H. Liu, Mater. Res. Bull. 145, 111521 (2022)

    Article  CAS  Google Scholar 

  16. A.A. Khan, S.A. Arbab, A. Manan, A. Saboor, A. Ullah, N.S. Khattak, I. Ahmad, M.N. Khan, T. Bashir, M. Asif, M. Sadiq, M. Arif, Mater. Res. Exp. 8, 045506 (2021)

    Article  CAS  Google Scholar 

  17. V. Veerapandiyan, F. Benes, T. Gindel, M. Deluca, Rev. Mater. 13, 5742 (2020)

    CAS  Google Scholar 

  18. Z. Liu, T. Lu, J. Ye, G. Wang, X. Dong, R. Withers, Y. Liu, Adv. Mater. Tech. 3, 1800111 (2018)

    Article  Google Scholar 

  19. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.F. Li, S. Zhang, Prog. Mater. Sci. 102, 72–108 (2019)

    Article  CAS  Google Scholar 

  20. A. Jan, H. Liu, H. Hao, Z. Yao, M. Cao, A.S. Ahmad, M. Tahir, M. Appiah, A. Ullah, M. Emmanuel, A. Ullah, A. Manan, J. Mater. Chem. C 8, 8962–8970 (2020)

    Article  CAS  Google Scholar 

  21. J. Koruza, B. Malič, M. Kosec, J. Am. Ceram. Soc. 94, 4174–4178 (2011)

    Article  CAS  Google Scholar 

  22. T. Wei, K. Liu, P. Fan, D. Lu, B. Ye, C. Zhou, H. Yang, H. Tan, D. Salamon, B. Nan, Ceram. Int. 47, 3713–3719 (2020)

    Article  Google Scholar 

  23. A. Xie, H. Qi, R. Zuo, ACS Appl. Mater. Interfaces 12, 19467 (2020)

    Article  CAS  Google Scholar 

  24. Z. Liu, J. Lu, Y. Mao, P. Ren, H. Fan, J. Eur. Ceram. Soc. 38, 4939–4945 (2018)

    Article  CAS  Google Scholar 

  25. R. Shi, Y. Pu, W. Wang, X. Guo, J. Li, M. Yang, S. Zhou, J. Alloys Compd. 815, 152356 (2020)

    Article  CAS  Google Scholar 

  26. W. Tang, Q. Xu, H. Liu, Z. Yao, H. Hao, M. Cao, High energy density dielectrics in lead-free Bi0.5Na0.5TiO3–NaNbO3–Ba(Zr0.2Ti0.8)O3 ternary system with wide operating temperature. J. Mater. Sci. 27, 6526–6534 (2016)

    CAS  Google Scholar 

  27. A. Manan, M.U. Rehman, A. Ullah, A.S. Ahmad, Y. Iqbal, I.Q.M. Ali Khan, H.U. Shah, A.H. Wazir, J. Adv. Dielect. 11, 2150018 (2021)

    Article  CAS  Google Scholar 

  28. R.D. Shannon, Acta Cryst. Sect. A 32, 751–767 (1976)

    Article  Google Scholar 

  29. A. Torres-Pardo, F. Krumeich, J.M. González-Calbet, E. García-González, J. Am. Chem. Soc. 132, 9843–9849 (2010)

    Article  CAS  Google Scholar 

  30. A.T. Pardo, R. Jiménez, E.G. González, J.M.G. Calbet, J. Mater. Chem. 22, 14938–14943 (2012)

    Article  Google Scholar 

  31. H. Wang, H. Yuan, X. Li, F. Zeng, K. Wu, Q. Zheng, G. Fan, D. Lin, Chem. Eng. J. 394, 124879 (2020)

    Article  CAS  Google Scholar 

  32. Z. Yang, H. Du, L. Jin, Q. Hu, S. Qu, Z. Yang, Y. Yu, J. Eur. Ceram. Soc. 39, 2899–2907 (2019)

    Article  CAS  Google Scholar 

  33. K. Kobayashi, M. Ryu, Y. Doshida, Y. Mizuno, C.A. Randall, J. Amer. Ceram. Soc. 96, 531–537 (2013)

    Article  CAS  Google Scholar 

  34. A. Manan, I. Qazi, A. Ullah, J. Electron. Mater. 42, 138–142 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

The financial support of the Higher Education Commission (HEC) Islamabad, Pakistan through the Local Challenge Fund (20-LCF-5/RGM/RF&D/HEC/2020) and National Research Program for Universities (7488/KPK/NRPU/R&D/HEC/2017) for this work is highly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

AM: Writing—Original draft preparation, MUR: Dielectric properties Interpretation SF: P–E loop data analysis, AU: Sample preparations, ZAG: Sample preparation for XRD, ASA: Energy density calculation,, MAK: Sample preparation for SEM, FA: Dielectric data analysis.

Corresponding author

Correspondence to Abdul Manan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manan, A., Rehman, M.U., Faisal, S. et al. Simultaneously achievement of high recoverable energy density and efficiency in sodium niobate-based ceramics. J Mater Sci: Mater Electron 33, 22208–22216 (2022). https://doi.org/10.1007/s10854-022-09000-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09000-3

Navigation