Skip to main content

Advertisement

Log in

NaNbO3-(Bi0.5La0.5)(Mg2/3Ta1/3)O3 lead-free ceramics achieve ultrafast discharge rate and excellent energy storage performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Advanced energy storage ceramics are specially beneficial to pulsed power technologies on account of first-class reliability and ultrafast discharge rate. However, the inferior energy storage performance hinders their further applications in the field of energy storage. In this work, a comprehensive strategy was adopted to synthesize the (1 − x)NaNbO3-x(Bi0.5La0.5)(Mg2/3Ta1/3)O3 ((1 − x)NN-xBLMT) lead-free ceramics by traditional solid-state method. Polar nano-regions are generated and the grain size is reduced to the microscale by introducing complex ions of (Bi0.5La0.5)(Mg2/3Ta1/3)6+ into the NN ceramic. The enhanced recoverable energy storage density (Wr = 3.69 J/cm3) and a high efficiency (η = 78%) can be realized simultaneously in 0.90NN-0.10BLMT ceramic at 440 kV/cm. Moreover, the ceramic presents excellent thermal and frequency stability within the range of 20–100 °C and 1–100 Hz at 200 kV/cm, respectively. More noteworthy, an ultrafast discharge rate (t0.9 = 23.6 ns) can be achieved in 0.90NN-0.10BLMT ceramic at 120 kV/cm, which is better than that of other lead-free energy storage ceramics. These results show that 0.90NN-0.10BLMT ceramic has broad application prospects in lead-free dielectric ceramic capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The date that support the findings of this study are available from corresponding author upon reasonable request.

References

  1. X.Y. Wang, X.J. Wu, D.Y. Yang, J. Yin, J.G. Wu, Achieving superior energy-storage efficiency by tailoring the state of polar nano-sized regions under low electric fields. Chem. Eng. J. 447, 137494 (2022). https://doi.org/10.1016/j.cej.2022.137494

    Article  CAS  Google Scholar 

  2. Y.L. Huang, C.L. Zhao, B.J.G. Wu, Multifunctional BaTiO3-based relaxor ferroelectrics toward excellent energy storage performance and electrostrictive strain benefiting from crossover region. ACS Appl. Mater. Interfaces 12, 23885–23895 (2020). https://doi.org/10.1021/acsami.0c03677

    Article  CAS  Google Scholar 

  3. J. Yin, Y.X. Zhang, X. Lv, J.G. Wu, Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics. J. Mater. Chem. A 6, 9823–9832 (2018). https://doi.org/10.1039/c8ta00474a

    Article  CAS  Google Scholar 

  4. G. Wang, Z.L. Lu, Y. Li, L.H. Li, H.F. Ji, A. Feteira, D. Zhou, D.W. Wang, S.J. Zhang, I.M. Reaney, Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 12110, 6124–6172 (2021). https://doi.org/10.1021/acs.chemrev.0c01264

    Article  CAS  Google Scholar 

  5. H.B. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Y.Y. Wang, L.N. Guo, W.D. Tai, H. Wei, Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc. 3710, 3303–3311 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.03.071

    Article  CAS  Google Scholar 

  6. K.L. Zou, Y. Dan, H.J. Xu, Q.F. Zhang, Y.M. Lu, H.T. Huang, Y.B. He, Recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull. 113, 190–201 (2019). https://doi.org/10.1016/j.materresbull.2019.02.002

    Article  CAS  Google Scholar 

  7. Q.P. Dong, X. Wang, J.M. Wang, Y. Pan, X.Y. Dong, H.Y. Chen, X.L. Chen, H.F. Zhou, Enhanced energy storage performance in Na(1-3x)BixNb0.85Ta0.15O3 relaxor ferroelectric ceramics. Ceram. Int. 481, 776–783 (2022). https://doi.org/10.1016/j.ceramint.2021.09.158

    Article  CAS  Google Scholar 

  8. Y. Lin, D. Li, M. Zhang, H.B. Yang, (Na0.5Bi0.5)0.7Sr0.3TiO3 modified by Bi(Mg2/3Nb1/3)O3 ceramics with high energy-storage properties and an ultrafast discharge rate. J. Mater. Chem. C 87, 2258–2264 (2020). https://doi.org/10.1039/c9tc06218a

    Article  CAS  Google Scholar 

  9. Y. Lin, D. Li, M. Zhang, S.L. Zhan, Y.D. Yang, H.B. Yang, Q.B. Yuan, Excellent energy-storage properties achieved in BaTiO3-based lead-free relaxor ferroelectric ceramics via domain engineering on the nanoscale. ACS Appl. Mater. Interfaces 1140, 36824–36830 (2019). https://doi.org/10.1021/acsami.9b10819

    Article  CAS  Google Scholar 

  10. D. Li, D. Zhou, D. Wang, W. Zhao, Y. Guo, Z. Shi, Improved energy storage properties achieved in (K, Na)NbO3 based relaxor ferroelectric ceramics via a combinatorial optimization strategy. Adv. Funct. Mater. 32, 2111776 (2021). https://doi.org/10.1002/adfm.202111776

    Article  CAS  Google Scholar 

  11. X. Wang, Y. Fan, B. Zhang, A. Mostaed, L. Li, A. Feteira, D. Wang, G. Wang, I.M. Reaney, High discharge energy density in novel K1/2Bi1/2TiO3-BiFeO3 based relaxor ferroelectrics. J. Eur. Ceram. Soc. 42, 7381–7387 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.08.020

    Article  CAS  Google Scholar 

  12. A. Khesro, F.A. Khan, R. Muhammad, A. Ali, M. Khan, D. Wang, Energy storage performance of Nd3+ doped lead-free BiFeO3-BaTiO3-based lead-free ceramics. Ceram. Int. 48, 29938–29943 (2022). https://doi.org/10.1016/j.ceramint.2022.06.260

    Article  CAS  Google Scholar 

  13. F. Yan, K.W. Huang, T. Jiang, X.F. Zhou, Y.J. Shi, G.L. Ge, B. Shen, J.W. Zhai, Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater. 30, 392–400 (2022). https://doi.org/10.1016/j.ensm.2020.05.026

    Article  Google Scholar 

  14. H.B. Yang, J.H. Tian, Y. Lin, J.Q. Ma, Realizing ultra-high energy storage density of lead-free 0.76Bi0.5Na0.5TiO3-0.24SrTiO3-Bi(Ni2/3Nb1/3)O3 ceramics under low electric fields. Chem. Eng. J. 418, 129337 (2021). https://doi.org/10.1016/j.cej.2021.129337

    Article  CAS  Google Scholar 

  15. D. Han, C. Wang, Z. Zeng, X. Wei, P. Wang, Q. Liu, D. Wang, F. Meng, Ultrahigh energy efficiency of (1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3-xBi(Mg0.5Sn0.5)O3 lead-free ceramics. J. Alloys Compd. 902, 163721 (2022). https://doi.org/10.1016/j.jallcom.2022.163721

    Article  CAS  Google Scholar 

  16. T. Wang, J.Q. Liu, L. Kong, H.B. Yang, F. Wang, C.C. Li, Evolution of the structure, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3-added BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics. Ceram. Int. 4616, 25392–25398 (2020). https://doi.org/10.1016/j.ceramint.2020.07.007

    Article  CAS  Google Scholar 

  17. J. Jiang, X.J. Meng, L. Li, J. Zhang, S. Guo, J. Wang, X.H. Hao, H.G. Zhu, S.T. Zhang, Enhanced energy storage properties of lead-free NaNbO3-based ceramics via a/b-site substitution. Chem. Eng. J. 422, 130130 (2021). https://doi.org/10.1016/j.cej.2021.130130

    Article  CAS  Google Scholar 

  18. M. Zhang, H.B. Yang, D. Li, Y. Lin, Excellent energy density and power density achieved in K0.5Na0.5NbO3-based ceramics with high optical transparency. J. Alloys Compd. 829, 154565 (2020). https://doi.org/10.1016/j.jallcom.2020.154565

    Article  CAS  Google Scholar 

  19. M. Zhang, H.B. Yang, D. Li, L. Ma, Y. Lin, Giant energy storage efficiency and high recoverable energy storage density achieved in K0.5Na0.5NbO3-Bi(Zn0.5Zr0.5)O3 ceramics. J. Mater. Chem. C 826, 8777–8785 (2020). https://doi.org/10.1039/d0tc01711f

    Article  CAS  Google Scholar 

  20. Z.T. Chen, X.Y. Bu, B.X. Ruan, J. Du, P. Zheng, L.L. Li, F. Wen, W.F. Bai, W. Wu, L. Zheng, Y. Zhang, Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 4015, 5450–5457 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.073

    Article  CAS  Google Scholar 

  21. J.T. Wang, X.R. Nie, Z.H. Peng, X.P. Lei, P.F. Liang, Z.P. Yang, X.L. Chao, Ultra-fast charge-discharge and high energy storage density realized in NaNbO3-La(Mn0.5Ni0.5)O3 ceramics. Ceram. Int. 4720, 28493–28499 (2021). https://doi.org/10.1016/j.ceramint.2021.07.004

    Article  CAS  Google Scholar 

  22. J. Jiang, X.J. Li, L. Li, S. Guo, J. Zhang, J. Wang, H.G. Zhu, Y.P. Wang, S.T. Zhang, Novel lead-free NaNbO3-based relaxor antiferroelectric ceramics with ultrahigh energy storage density and high efficiency. J. Materiomics 82, 295–301 (2022). https://doi.org/10.1016/j.jmat.2021.09.007

    Article  Google Scholar 

  23. J.J. Ma, D.H. Zhang, F. Ying, X.J. Li, L. Li, S. Guo, Y. Huan, J. Zhang, J. Wang, S.T. Zhang, Ultrahigh energy storage density and high efficiency in lead-free (Bi0.9Na0.1)(Fe0.8Ti0.2)O3-modified NaNbO3 ceramics via stabilizing the antiferroelectric phase and enhancing relaxor behavior. ACS Appl. Mater. Interfaces 1417, 19704–19713 (2022). https://doi.org/10.1021/acsami.2c02086

    Article  CAS  Google Scholar 

  24. F.H. Pang, X.L. Chen, J.P. Shi, C.C. Sun, H.Y. Chen, X.Y. Dong, H.F. Zhou, Bi(Mg0.5Sn0.5)O3-doped NaNbO3 lead-free ceramics achieve excellent energy-storage and charge/discharge performances. ACS Sustain. Chem. Eng. 913, 4863–4871 (2021). https://doi.org/10.1021/acssuschemeng.1c00303

    Article  CAS  Google Scholar 

  25. T. Zhang, T. Karaki, T. Fujii, Effect of La(Nb1/3Mg2/3)O3 addition on phase transition behavior and energy storage properties of NaNbO3 ceramics. Jpn. J. Appl. Phys. (2021). https://doi.org/10.35848/1347-4065/ac155c

    Article  Google Scholar 

  26. N. Qu, H.L. Du, X.H. Hao, A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics. J. Mater. Chem. C 726, 7993–8002 (2019). https://doi.org/10.1039/c9tc02088h

    Article  CAS  Google Scholar 

  27. H.Y. Chen, J.P. Shi, X.L. Chen, C.C. Sun, F.H. Pang, X.Y. Dong, H.L. Zhang, H.F. Zhou, Excellent energy storage properties and stability of NaNbO3-Bi(Mg0.5Ta0.5)O3 ceramics by introducing (Bi0.5Na0.5)0.7Sr0.3TiO3. J. Mater. Chem. A 98, 4789–4799 (2021). https://doi.org/10.1039/d0ta11022a

    Article  CAS  Google Scholar 

  28. J. Chen, H. Qi, R. Zuo, Realizing stable relaxor antiferroelectric and superior energy storage properties in (Na1-x/2Lax/2)(Nb1-xTix)O3 lead-free ceramics through A/B-site complex substitution. ACS Appl. Mater. Interfaces 1229, 32871–32879 (2020). https://doi.org/10.1021/acsami.0c09876

    Article  CAS  Google Scholar 

  29. D. Li, Y. Lin, M. Zhang, H. Yang, Achieved ultrahigh energy storage properties and outstanding charge-discharge performances in (Na0.5Bi0.5)0.7Sr0.3TiO3-based ceramics by introducing a linear additive. Chem. Eng. J. 392, 123729-1-123729–8 (2020). https://doi.org/10.1016/j.cej.2019.123729

    Article  CAS  Google Scholar 

  30. M.X. Zhou, R.H. Liang, Z.Y. Zhou, X.L. Dong, Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. J. Mater. Chem. A 637, 17896–17904 (2018). https://doi.org/10.1039/c8ta07303a

    Article  CAS  Google Scholar 

  31. H. Chen, X. Chen, J. Shi, C. Sun, X. Dong, F. Pang, H. Zhou, Achieving ultrahigh energy storage density in NaNbO3-Bi(Ni0.5Zr0.5)O3 solid solution by enhancing the breakdown electric field. Ceram. Int. 46, 28407–28413 (2020). https://doi.org/10.1016/j.ceramint.2020.07.345

    Article  CAS  Google Scholar 

  32. F.H. Pang, X.L. Chen, C.C. Sun, J.P. Shi, X. Li, H.Y. Chen, X.Y. Dong, H.F. Zhou, Ultrahigh energy storage characteristics of sodium niobate-based ceramics by introducing a local random field. ACS Sustain. Chem. Eng. 839, 14985–14995 (2020). https://doi.org/10.1021/acssuschemeng.0c05265

    Article  CAS  Google Scholar 

  33. I.P. Raevski, L.A. Reznitchenko, M.A. Malitskaya, L.A. Shilkina, S.O. Lisitsina, S.I. Raevskaya, E.M. Kuznetsova, NaNbO3-based relaxor. Ferroelectrics 299, 95–101 (2004). https://doi.org/10.1080/00150190490429231

    Article  CAS  Google Scholar 

  34. Y. Lin, Y.J. Zhang, S.L. Zhan, C. Sun, G.L. Hu, H.B. Yang, Q.B. Yuan, Synergistically ultrahigh energy storage density and efficiency in designed sandwich-structured poly(vinylidene fluoride)-based flexible composite films induced by doping Na0.5Bi0.5TiO3 whiskers. J. Mater. Chem. A 844, 23427–23435 (2020). https://doi.org/10.1039/d0ta07937e

    Article  CAS  Google Scholar 

  35. M. Zhang, H. Yang, Y. Lin, Q. Yuan, H. Du, Significant increase in comprehensive energy storage performance of potassium sodium niobate-based ceramics via synergistic optimization strategy. Energy Storage Mater. 45, 861–868 (2022). https://doi.org/10.1016/j.ensm.2021.12.037

    Article  Google Scholar 

  36. M. Zhang, H.B. Yang, Y.W. Yu, Y. Lin, Energy storage performance of K0.5Na0.5NbO3-based ceramics modified by Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.131465

    Article  Google Scholar 

  37. W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, W.D. Fei, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc. 363, 593–600 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.10.019

    Article  CAS  Google Scholar 

  38. J.G. Hao, Z.J. Xu, R.Q. Chu, W.L. Li, D. Juan, F. Peng, Enhanced energy-storage properties of (1-x) [(1-y)(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3]-x(K0.5Na0.5)NbO3 lead-free ceramics. Solid State Commun. 204, 19–22 (2015). https://doi.org/10.1016/j.ssc.2014.12.004

    Article  CAS  Google Scholar 

  39. D.X. Li, Z.Y. Shen, Z.P. Li, W.Q. Luo, X.C. Wang, Z.M. Wang, F.S. Song, Y.M. Li, P-E hysteresis loop going slim in Ba0.3Sr0.7TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications. J. Adv. Ceram. 92, 183–192 (2020). https://doi.org/10.1007/s40145-020-0358-9

    Article  CAS  Google Scholar 

  40. B.B. Liu, X.H. Wang, R.X. Zhang, L.T. Li, Grain size effect and microstructure influence on the energy storage properties of fine-grained BaTiO3-based ceramics. J. Am. Ceram. Soc. 1008, 3599–3607 (2017). https://doi.org/10.1111/jace.14802

    Article  CAS  Google Scholar 

  41. G. Liu, Y. Li, M.Q. Shi, L.J. Yu, P. Chen, K. Yu, Y. Yan, L. Jin, D.W. Wang, J.H. Gao, An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability. Ceram. Int. 4515, 19189–19196 (2019). https://doi.org/10.1016/j.ceramint.2019.06.166

    Article  CAS  Google Scholar 

  42. G. Liu, L.Y. Zhang, Q.K. Wu, Z.Y. Wang, Y. Li, D.Q. Li, H.B. Liu, Y. Yan, Enhanced energy storage properties in MgO-doped BaTiO3 lead-free ferroelectric ceramics. J. Mater. Sci.: Mater. Electron. 2921, 18859–18867 (2018). https://doi.org/10.1007/s10854-018-0011-3

    Article  CAS  Google Scholar 

  43. V.S. Puli, D.K. Pradhan, B.C. Riggs, D.B. Chrisey, R.S. Katiyar, Investigations on structure, ferroelectric, piezoelectric and energy storage properties of barium calcium titanate (BCT) ceramics. J. Alloys Compd. 584, 369–373 (2014). https://doi.org/10.1016/j.jallcom.2013.09.108

    Article  CAS  Google Scholar 

  44. C.C. Sun, X.L. Chen, J.P. Shi, F.H. Pang, X.Y. Dong, H.Y. Chen, K.G. Wang, X.J. Zhou, H.F. Zhou, Simultaneously with large energy density and high efficiency achieved in NaNbO3-based relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 413, 1891–1903 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.049

    Article  CAS  Google Scholar 

  45. W.L. Tang, Q. Xu, H.X. Liu, Z.H. Yao, H. Hao, M.H. Cao, High energy density dielectrics in lead-free Bi0.5Na0.5TiO3-NaNbO3-Ba(Zr0.2Ti0.8)O3 ternary system with wide operating temperature. J. Mater. Sci.: Mater. Electron. 276, 6526–6534 (2016). https://doi.org/10.1007/s10854-016-4596-0

    Article  CAS  Google Scholar 

  46. Y. Tian, L. Jin, H.F. Zhang, Z. Xu, X.Y. Wei, G. Viola, I. Abrahams, H.X. Yan, Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 533, 17525–17531 (2017). https://doi.org/10.1039/c7ta03821f

    Article  CAS  Google Scholar 

  47. C.H. Xu, Z.Q. Fu, Z. Liu, L. Wang, S.G. Yan, X.F. Chen, F. Cao, X.L. Dong, G.S. Wang, La/Mn codoped AgNbO3 lead-free antiferroelectric ceramics with large energy density and power density. ACS Sustain. Chem. Eng. 612, 16151–16159 (2018). https://doi.org/10.1021/acssuschemeng.8b02821

    Article  CAS  Google Scholar 

  48. H.G. Yang, H. Qi, R.Z. Zuo, Enhanced breakdown strength and energy storage density in a new BiFeO3-based ternary lead-free relaxor ferroelectric ceramic. J. Eur. Ceram. Soc. 398, 2673–2679 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.03.001

    Article  CAS  Google Scholar 

  49. H.B. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics. Sci. Rep. 71, 8726 (2017). https://doi.org/10.1038/s41598-017-06966-7

    Article  CAS  Google Scholar 

  50. Z.T. Yang, F. Gao, H.L. Du, L. Jin, L.L. Yan, Q.Y. Hu, Y. Yu, S.B. Qu, X.Y. Wei, Z. Xu, Y.J. Wang, Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 58, 768–777 (2019). https://doi.org/10.1016/j.nanoen.2019.02.003

    Article  CAS  Google Scholar 

  51. J.M. Ye, G.S. Wang, M.X. Zhou, N.T. Liu, X.F. Chen, S. Li, F. Cao, X.L. Dong, Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications. J. Mater. Chem. C 719, 5639–5645 (2019). https://doi.org/10.1039/c9tc01414d

    Article  CAS  Google Scholar 

  52. Z.L. Yu, Y.F. Liu, M.Y. Shen, H. Qian, F.F. Li, Y.N. Lyu, Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics. Ceram. Int. 4310, 7653–7659 (2017). https://doi.org/10.1016/j.ceramint.2017.03.062

    Article  CAS  Google Scholar 

  53. L. Zhao, Q. Liu, S.J. Zhang, J.F. Li, Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J. Mater. Chem. C 436, 8380–8384 (2016). https://doi.org/10.1039/c6tc03289c

    Article  Google Scholar 

  54. D.G. Zheng, R.Z. Zuo, D.S. Zhang, Y. Li, X. Tan, Novel BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Ceram. Soc. 989, 2692–2695 (2015). https://doi.org/10.1111/jace.13737

    Article  CAS  Google Scholar 

  55. X.Y. Dong, X. Li, X.L. Chen, H.Y. Chen, C.C. Sun, J.P. Shi, F.H. Pang, H.F. Zhou, High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement. J. Materiomics 73, 629–639 (2021). https://doi.org/10.1016/j.jmat.2020.11.016

    Article  Google Scholar 

  56. F. Yan, H.R. Bai, G.L. Ge, J.F. Lin, K. Zhu, G.H. Li, J. Qian, B. Shen, J.W. Zhai, Z.F. Liu, Boosting energy storage performance of lead-free ceramics via layered structure optimization strategy. Small 18, 2202575 (2022). https://doi.org/10.1002/smll.202202575

    Article  CAS  Google Scholar 

  57. B. Zhang, X. Chen, W. Wu, A. Khesro, P. Liu, M. Mao, K. Song, R. Sun, D. Wang, Outstanding discharge energy density and efficiency of the bilayer nanocomposite films with BaTiO3-dispersed PVDF polymer and polyetherimide layer. Chem. Eng. J. 446, 136926 (2022). https://doi.org/10.1016/j.cej.2022.136926

    Article  CAS  Google Scholar 

  58. Z.B. Pan, D. Hu, Y. Zhang, J.J. Liu, B. Shen, J.W. Zhai, Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J. Mater. Chem. C 7, 4072–4078 (2019). https://doi.org/10.1039/C9TC00087A

    Article  CAS  Google Scholar 

  59. T. Li, P. Chen, F. Li, C. Wang, Energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127151

    Article  Google Scholar 

  60. G. Wang, Z.L. Lu, J.L. Li, H.F. Ji, H.J. Yang, L.H. Li, S.K. Sun, A. Feteira, H.G. Yang, R.Z. Zuo, D.W. Wang, I.M. Reaney, Lead-free (Ba, Sr)TiO3-BiFeO3 based multilayer ceramic capacitors with high energy density. J. Eur. Ceram. Soc. 404, 1779–1783 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.12.009

    Article  CAS  Google Scholar 

  61. F. Yang, Z.B. Pan, Z.Q. Ling, D. Hu, J. Ding, P. Li, J.J. Liu, J.W. Zhai, Realizing high comprehensive energy storage performances of BNT-based ceramics for application in pulse power capacitors. J. Eur. Ceram. Soc. 414, 2548–2558 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.11.049

    Article  CAS  Google Scholar 

  62. L.T. Yang, X. Kong, Z.X. Cheng, S.J. Zhang, Enhanced energy storage performance of sodium niobate-based relaxor dielectrics by a ramp-to-spike sintering profile. ACS Appl. Mater. Interfaces 1229, 32834–32841 (2020). https://doi.org/10.1021/acsami.0c08737

    Article  CAS  Google Scholar 

  63. M. Emmanuel, H. Hao, H.X. Liu, A. Jan, F. Alresheedi, Significantly enhanced energy storage density of NNT ceramics using aliovalent Dy3+ dopant. ACS Sustain. Chem. Eng. 917, 5849–5859 (2021). https://doi.org/10.1021/acssuschemeng.0c08714

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 52172117) and the Key Research and Development Program of Shaanxi Province (Grant No. 2022GY-347).

Funding

Funding was provided by the National Natural Science Foundation of China (Grant No. 52172117) and the Key Research and Development Program of Shaanxi Province (Grant No. 2022GY-347).

Author information

Authors and Affiliations

Authors

Contributions

CL contributed to investigation, methodology, writing-original draft, writing-review, and editing. HY contributed to project administration, funding acquisition, visualization, and software. Renrui Hu contributed to writing-review and editing. YL contributed to supervision, resources, data curation, writing-review, and editing.

Corresponding author

Correspondence to Ying Lin.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yang, H., Hu, R. et al. NaNbO3-(Bi0.5La0.5)(Mg2/3Ta1/3)O3 lead-free ceramics achieve ultrafast discharge rate and excellent energy storage performance. J Mater Sci: Mater Electron 34, 668 (2023). https://doi.org/10.1007/s10854-023-10009-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10009-5

Navigation