Skip to main content
Log in

Pulsed light effects in amorphous As2S3: review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is known that amorphous chalcogenide materials exhibit unique optical phenomena, including high nonlinearity, photodarkening, and phase changes. Upon single or repeated, pulsed excitations, these phenomena induce changes in optical properties and/or macroscopic shapes, which are promising for applications to photonic devices and micro-fabrications. We consider comprehensively the fundamentals of such pulse-induced phenomena appearing in sulfides (and selenides), which may be contrastive to the opto-thermal phase change in telluride films. The optical nonlinearity works as refractive-index switches with fs response times, transient absorption could operate as optical switches, and photodarkening-related effects can be applied to memories. Besides, damages produced by intense pulses may be useful for micro-fabrications. These responses are feasible at the optical communication wavelength, ~ 1.55 μm, where the materials are transparent. However, roles of band-edge and -gap states remain to be explored. Pulsed excitations would also produce noticeable temperature rises, for which a simple evaluation scheme is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Copyright permission has been obtained from the publisher (Colour figure online)

Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. Unless otherwise specified, the work adopts As2S3 properties as follows: The optical gap Eg ≈ 2.4 eV, refractive index n ≈ 2.5 at λ ≈ 1 μm, volumeric specific heat cv ≈ 2 J/(cm3K), and thermal conductivity κ ≈ 3 × 10−3 W/(cmK) [4].

  2. Previous work has adopted 77, while 95 seems to be a better approximation [50].

  3. Note that the Lorentz–Lorenz equation predicts that a volume contraction causes a refractive-index increase, as really observed in SiO2, while in many chalcogenide glasses including As2S3 the photodarkening causes the index increase, which is quantitatively explainable using the Kramers-Krönig relation (or the Moss rule) [165, 166]

  4. We here define it as deformed structures (not optical changes) that cannot be recovered by annealing.

  5. It is important to distinguish optical effects induced by free (hot) and trapped carriers that exist above and below the mobility edge in amorphous semiconductors. See, Appendix.

References

  1. B.T. Kolomiets, Vitreous semiconductors 1 & 2. Phys. Stat. Sol. 7, 359–713 (1964)

    Article  CAS  Google Scholar 

  2. M.A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic Pub, Dordrecht, 2000)

    Book  Google Scholar 

  3. A. Zakery, S.R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Springer, Heidelberg, 2007)

    Google Scholar 

  4. K. Tanaka, K. Shimakawa, Amorphous Chalcogenide Semiconductors and Related Materials, 2nd edn. (Springer, Cham, 2021)

    Book  Google Scholar 

  5. S.R. Ovshinsky, H. Fritzsche, Amorphous semiconductors for switching, memory, and imaging applications. IEEE Trans. Electron Devices 20, 91 (1973)

    Article  CAS  Google Scholar 

  6. P. Guo, A.M. Sarangan, I. Agha, A Review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators. Appl. Sci. 9, 530 (2019)

    Article  CAS  Google Scholar 

  7. M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, X. Miao, Recent advances on neuromorphic devices based on chalcogenide phase-change materials. Adv. Funct. Mater. 30, 2003419 (2020)

    Article  CAS  Google Scholar 

  8. D. Mao, M. Chen, X. Ma, A. Soman, H. Xing, T. Kananen, N. Augenbraun, C. Cheng, M. Doty, T. Gu, Sub-bandgap pulsed laser patterning of planar chalcogenide microphotonics. Opt. Mater. Express 10, 2126 (2020)

    Article  CAS  Google Scholar 

  9. M.S. Arjunan, S. Durai, A. Manivannan, Multilevel switching in phase-change photonic memory devices. Phys. Status Solidi RRL 15, 2100291 (2021)

    Article  CAS  Google Scholar 

  10. R.E. Simpson, T. Cao, The World Scientific Reference of Amorphous Materials, in Chap. 15 phase change material photonics. ed. by A.V. Kolobov, K. Shimakawa (World Scientific, Singapore, 2021)

    Google Scholar 

  11. V.V. Ionin, A.V. Kiselev, A.A. Burtsev, V.A. Mikhalevsky, N.N. Eliseev, I.M. Asharchuk, V.I. Sokolov, A.A. Lotin, An optical synapse based on a polymer waveguide with a GST(225) active layer. Appl. Phys. Lett. 119, 081105 (2021)

    Article  CAS  Google Scholar 

  12. S.A. Keneman, Hologram storage in arsenic trisulfide thin films. Appl. Phys. Lett. 19, 205 (1971)

    Article  CAS  Google Scholar 

  13. S. Zembutsu, Y. Toyoshima, T. Igo, H. Nagai, Properties of (Se, S)-based chalcogenide glass films, and an application to a holographic supermicrofiche. Appl. Opt. 14, 3073 (1975)

    Article  CAS  Google Scholar 

  14. J. Teteris, Holographic recording in amorphous chalcogenide thin films. Curr. Opin. Solid State Mater. Sci. 7, 127 (2003)

    Article  CAS  Google Scholar 

  15. R.K. Watt, M. de Wit, W.C. Holton, Nonoxide chalcogenide glass films for integrated optics. Appl. Opt. 13, 2329 (1974)

    Article  Google Scholar 

  16. Y. Imai, Y. Ohtsuka, K. Tanaka, Multiple-output logic element based on an optical interference system. Opt. Quant. Electron. 17, 119 (1985)

    Article  Google Scholar 

  17. V.G. Taeed, N.J. Baker, L. Fu, K. Finsterbusch, M.R.E. Lamont, D.J. Moss, H.C. Nguyen, B.J. Eggleton, D.Y. Choi, S. Madden, B. Luther-Davies, Ultrafast all-optical chalcogenide glass photonic circuits. Opt. Express 15, 9205 (2007)

    Article  CAS  Google Scholar 

  18. J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photon. 5, 141 (2011)

    Article  CAS  Google Scholar 

  19. J.S. Sanghera, L.B. Shaw, P. Pureza, V.Q. Nguyen, D. Gibson, L. Busse, I.D. Aggarwal, Nonlinear properties of chalcogenide glass fibers. Inter. J. Appl. Glass Sci. 1, 296 (2010)

    Article  CAS  Google Scholar 

  20. S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, Y. Xu, A review of mid-infrared supercontinuum generation in chalcogenide glass fibers. Appl. Sci. 8, 707 (2018)

    Article  Google Scholar 

  21. D. Xin, P. Gao, G. Huo, X. Li, Mid-infrared supercontinuum generation in chalcogenide optical fibers. Optik 183, 822 (2019)

    Article  CAS  Google Scholar 

  22. K. Shimakawa, A. Kolobov, S.R. Elliott, Photoinduced effects and metastability in amorphous semiconductors and insulators. Adv. Phys. 44, 475 (1995)

    Article  CAS  Google Scholar 

  23. A.V. Kolobov (ed.), Photo-Induced Metastability in Amorphous Semiconductors (Wiley, Weinheim, 2003)

    Google Scholar 

  24. J.D. Musgraves, K. Richardson, H. Jain, Laser-induced structural modification, its mechanisms, and applications in glassy optical materials. Opt. Mater. Express 1, 921 (2011)

    Article  Google Scholar 

  25. P. Khan, K.V. Adarsh, Light-induced effects in amorphous chalcogenide glasses: Femtoseconds to seconds. Physics 3, 255 (2021)

    Article  Google Scholar 

  26. C. D’Amico, G. Martin, J.T.G. Cheng, R. Stoian, Multiscale laser written photonic structures in bulk chalcogenide glasses for infrared light transport and extraction. Photonics 8, 211 (2021)

    Article  Google Scholar 

  27. D. Emin, C.H. Seager, R.K. Quinn, Small-polaron hopping motion in some chalcogenide glasses. Phys. Rev. Lett. 28, 813 (1972)

    Article  CAS  Google Scholar 

  28. Y. Toyozawa, Optical Processes in Solids (Cambridge University, Cambridge, 2003)

    Book  Google Scholar 

  29. J.P. De Neufville, S.C. Moss, S.R. Ovshinsky, Photostructural transformations in amorphous As2Se3 and As2S3 films. J. Non-Cryst. Solids 13, 191 (1974)

    Article  Google Scholar 

  30. H. Hamanaka, K. Tanaka, S. Iijima, Reversible photostructural change in melt-quenched As2S3 glass. Solid State Commun. 23, 63 (1977)

    Article  CAS  Google Scholar 

  31. H. Hisakuni, K. Tanaka, Optical microfabrication of chalcogenide glasses. Science 270, 974 (1995)

    Article  CAS  Google Scholar 

  32. R.W. Boyd, Nonlinear Optics, 4th edn. (Academic Press, Amsterdam, 2020)

    Google Scholar 

  33. K. Tanaka, Impact ionizations in amorphous semiconductors and insulators; Se, Ge2Sb2Te5 and SiO2. J. Non-Cryst. Solids 528, 119707 (2020)

    Article  CAS  Google Scholar 

  34. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, 2005)

    Google Scholar 

  35. S.M. Eaton, H. Zhang, P.R. Herman, F. Yoshino, L. Shah, J. Bovatsek, A.Y. Arai, Heat accumulation effects in femtosecond laser written waveguides with variable repetition rate. Opt. Express 13, 4708 (2005)

    Article  Google Scholar 

  36. H.D. Qi, X. Yu, Y. Zhang, Z. Zhang, T. Xu, X. Zhang, S. Dai, X. Shen, B. Song, P. Zhang, Y. Xu, In-Situ and ex-situ characterization of femtosecond laser-induced ablation on chalcogenide glasses and advanced grating structures fabrication. Materials 12, 72 (2019)

    Google Scholar 

  37. C. Kittel, H. Kroemer, Thermal Physics, 2nd edn. (W.H. Freeman and Company, San Francisco, 1980)

    Google Scholar 

  38. M. Lax, Temperature rise induced by a laser beam. J. Appl. Phys. 48, 3919 (1977)

    Article  CAS  Google Scholar 

  39. O. Nordman, N. Nordman, J. Teteris, On thermal influence of laser beam irradiation on optical absorption of amorphous as-evaporated As-S films. Opt. Commun. 146, 69 (1998)

    Article  CAS  Google Scholar 

  40. Y.-L. Gan, L. Wang, X.-Q. Su, S.-W. Xu, X. Shen, R.-P. Wang, Thermal conductivity of GexSb(As)ySe100-x-y glasses measured by Raman scattering spectra. J. Raman Spectrosc. 45, 377 (2014)

    Article  CAS  Google Scholar 

  41. D.D. Thornburg, Temperature of amorphous chalcogenide films during growth by physical vapor deposition. Thin Solid Films 11, 219 (1972)

    Article  CAS  Google Scholar 

  42. K. Tanaka, Y. Ohtsuka, Measurements of photoinduced transformations in amorphous As2S3 films by optical waveguiding. J. Appl. Phys. 49, 6132 (1978)

    Article  CAS  Google Scholar 

  43. J. Fan, J. Kakalios, Optical absorption spectrum of hydrogenated amorphous silicon using photo-pyroelectric spectroscopy. J. Appl. Phys. 74, 1799 (1993)

    Article  CAS  Google Scholar 

  44. C.R. Schardt, P. Lucas, A. Doraiswamy, P. Jivaganont, J.H. Simmons, Raman temperature measurement during photostructural changes in GexSe1–x glass. J. Non-Cryst. Solids 351, 1653 (2005)

    Article  CAS  Google Scholar 

  45. R.E. Tallman, A. Reznik, B.A. Weinstein, S.D. Baranovskii, J.A. Rowlands, Similarities in the kinetics of photocrystallization and photodarkening in a-Se. Appl. Phys. Lett. 93, 212103 (2008)

    Article  Google Scholar 

  46. H.Y. Fan, Temperature dependence of the energy gap in monatomic semiconductors. Phys. Rev. 78, 900 (1950)

    Article  Google Scholar 

  47. L. Tichy, H. Ticha, Correlation between photo-induced red shift of the optical band gap and the slope of Urbach edge in amorphous and glassy As2S3. Mater. Lett. 164, 232 (2016)

    Article  CAS  Google Scholar 

  48. T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Stat. Sol. B 131, 415 (1985)

    Article  CAS  Google Scholar 

  49. K. Shinkawa, K. Ogusu, Pulse-width dependence of optical nonlinearities in As2Se3 chalcogenide glass in the picosecond-to-nanosecond region. Opt. Express 16, 18230 (2008)

    Article  CAS  Google Scholar 

  50. H. Finkenrath, The Moss rule and the influence of doping on the optical dielectric-constant of semiconductors. Infrared Phys. 28, 327 (1988)

    Article  CAS  Google Scholar 

  51. M. Shaik-Bahae, E.W. Van Stryland, Semiconductors and Semimetals, in Optical Nonlinearity in the Transparent Region of Bulk Semiconductors. ed. by E. Garmire, A. Kost (Academic Press, San Diego, 1999)

    Google Scholar 

  52. K. Tanaka, Optical nonlinearity in photonic glasses. J. Mater. Sci 16, 633 (2005)

    CAS  Google Scholar 

  53. K. Tanaka, Have we understood the optical absorption edge in chalcogenide glasses? J. Non-Cryst. Solids 431, 21 (2016)

    Article  CAS  Google Scholar 

  54. E.M. Vogel, M.J. Weber, D.M. Krol, Nonlinear optical phenomena in glass. Phys. Chem. Glasses 32, 231 (1991)

    CAS  Google Scholar 

  55. A. Saitoh, K. Tanaka, Optical nonlinearity in chalcogenide glasses for near-infrared all-optical devices. J. Optoelectron. Adv. Mater. 13, 71 (2011)

    Google Scholar 

  56. E. Romanova, Y. Kuzyutkina, V. Shiryaev, N. Abdel-Moneim, D. Furniss, T. Benson, A. Seddon, S. Guizard, Measurement of non-linear optical coefficients of chalcogenide glasses near the fundamental absorption band edge. J. Non-Cryst. Solids 480, 13 (2018)

    Article  CAS  Google Scholar 

  57. N.S. Dutta, J.M.P. Almeida, C.R. Mendonca, C.B. Arnold, Effects of disorder on two-photon absorption in amorphous semiconductors. Opt. Lett. 45, 3228 (2020)

    Article  Google Scholar 

  58. H. Tichá, L. Tichý, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optelectron. Adv. Mater. 4, 381 (2002)

    Google Scholar 

  59. K. Tanaka, Two-photon absorption spectroscopy of As2S3 glass. Appl. Phys. Lett. 80, 177 (2002)

    Article  CAS  Google Scholar 

  60. B. Gu, H.-T. Wang, W. Ji, Z-scan technique for investigation of the non-instantaneous optical Kerr nonlinearity. Opt. Lett. 34, 2769 (2009)

    Article  Google Scholar 

  61. H. Kobayashi, H. Kanbara, M. Koga, K. Kubodera, Third-order nonlinear optical properties of As2S3 chalcogenide glass. J. Appl. Phys. 74, 3683 (1993)

    Article  CAS  Google Scholar 

  62. F. Smektala, C. Quemard, V. Couderc, A. Barthélémy, Non-linear optical properties of chalcogenide glasses measured by Z-scan. J. Non-Cryst. Solids 274, 232 (2000)

    Article  CAS  Google Scholar 

  63. K.S. Bindra, H.T. Bookey, A.K. Kar, B.S. Wherrett, X. Liu, A. Jha, Nonlinear optical properties of chalcogenide glasses: observation of multiphoton absorption. Appl. Phys. Lett. 79, 1939 (2001)

    Article  CAS  Google Scholar 

  64. G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez, Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses As2S(Se)3. Opt. Commun. 219, 427 (2003)

    Article  CAS  Google Scholar 

  65. G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, F. Sanchez, Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses. Opt. Commun. 232, 417 (2004)

    Article  CAS  Google Scholar 

  66. F. Théberge, P. Mathieu, N. Thiré, J.-F. Daigle, B.E. Schmidt, J. Fortin, R. Vallée, Y. Messaddeq, F. Légaré, Mid-infrared nonlinear absorption in As2S3 chalcogenide glass. Opt. Express 24, 24600 (2016)

    Article  Google Scholar 

  67. K. Tanaka, Minimal Urbach energy in non-crystalline materials. J. Non-Cryst. Solids 389, 35 (2014)

    Article  CAS  Google Scholar 

  68. M. Dinu, Dispersion of phonon-assisted nonresonant third-order nonlinearities. IEEE J. Quant. Electron. 39, 1498 (2003)

    Article  CAS  Google Scholar 

  69. R.C. Enck, Two-photon photogeneration in amorphous selenium. Phys. Rev. Lett. 31, 220 (1973)

    Article  CAS  Google Scholar 

  70. A. Jha, X. Liu, A.K. Kar, H.T. Bookey, Inorganic glasses as Kerr-like media. Curr. Opin. Solid St. Mater. Sci. 5, 475 (2001)

    Article  CAS  Google Scholar 

  71. A. Zakery, S.R. Elliott, Optical properties and applications of chalcogenide glasses: a review. Non-Cryst. Solids 330, 1012 (2003)

    Article  Google Scholar 

  72. D.W. Hall, M.A. Newhouse, N.F. Borrelli, W.H. Dumbaugh, D.L. Weidman, Nonlinear optical susceptibilities of high-index glasses. Appl. Phys. Lett. 54, 1293 (1989)

    Article  CAS  Google Scholar 

  73. H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, K. Kamiya, Third-harmonic generation from some chalcogenide glasses. J. Am. Ceram. Soc. 731, 794 (1990)

    Google Scholar 

  74. M. Asobe, T. Kanamori, K. Kubodera, Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber. IEEE Photon. Technol. Lett. 4, 362 (1992)

    Article  Google Scholar 

  75. M. Asobe, K. Suzuki, T. Kanamori, K. Kubodera, Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation. Appl. Phys. Lett. 60, 1153 (1992)

    Article  CAS  Google Scholar 

  76. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino, Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers 155 μm. J. Appl. Phys. 77, 5518 (1995)

    Article  CAS  Google Scholar 

  77. R. Rangel-Rojo, T. Kosa, E. Hajto, P.J.S. Ewen, A.E. Owen, A.K. Kar, B.S. Wherrett, Near-infrared optical nonlinearities in amorphous chalcogenides. Opt. Commun. 109, 145 (1994)

    Article  CAS  Google Scholar 

  78. H. Kanbara, S. Fujiwara, K. Tanaka, H. Nasu, K. Hirao, Third-order nonlinear optical properties of chalcogenide glasses. Appl. Phys. Lett. 70, 925 (1997)

    Article  CAS  Google Scholar 

  79. K.A. Cerqua-Richardson, J.M. McKinley, B. Lawrence, S. Joshi, A. Villeneuve, Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form. Opt. Mater. 10, 155 (1998)

    Article  CAS  Google Scholar 

  80. T. Cardinal, K.A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J.F. Viens, A. Villenuve, Non-linear optical properties of chalcogenide glasses in the system As-S-Se. J. Non-Cryst. Solids 256&257, 353 (1999)

    Article  CAS  Google Scholar 

  81. J.M. Harbold, F.Ö. Ilday, F.W. Wise, J.S. Sanghera, V.Q. Nguyen, L.B. Shaw, I.D. Aggarwal, Highly nonlinear As-S-Se glasses for all-optical switching. Opt. Lett. 27, 119 (2002)

    Article  CAS  Google Scholar 

  82. A. Zakery, Y. Ruan, A.V. Rode, M. Samoc, B. Luther-Davies, Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films. J. Opt. Soc. Am. B 20, 1844 (2003)

    Article  CAS  Google Scholar 

  83. Y. Ruan, B. Luther-Davies, W. Li, A. Rode, V. Kolev, S. Madden, Large phase shifts in As2S3 waveguides for all-optical processing devices. Opt. Lett. 30, 2605 (2005)

    Article  CAS  Google Scholar 

  84. V.G. Taeed, M. Shokooh-Saremi, L. Fu, I.C.M. Littler, D.J. Moss, M. Rochette, B.J. Eggleton, Y. Ruan, B. Luther-Davies, Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides. IEEE J. Selected Topic Quant. Electron. 12, 360 (2006)

    Article  CAS  Google Scholar 

  85. S. Juodkazis, T. Kondo, H. Misawa, A. Rode, M. Samoc, B. Luther-Davies, Photo-structuring of As2S3 glass by femtosecond irradiation. Opt. Express 14, 7751 (2006)

    Article  CAS  Google Scholar 

  86. Q. Zhang, W. Liu, L. Liu, L. Xu, Y. Xu, G. Chen, Large and opposite changes of the third order optical nonlinearities of chalcogenide glasses by femtosecond and continuous wave laser irradiation. Appl. Phys. Lett. 91, 181917 (2007)

    Article  Google Scholar 

  87. I. Blonskyi, V. Kadan, O. Shpotyuk, M. Iovu, I. Pavlov, Femtosecond filamentation in chalcogenide glasses limited by two-photon absorption. Opt. Mater. 32, 1553 (2010)

    Article  CAS  Google Scholar 

  88. G. Lenz, J. Zimmermann, T. Katsufuji, M.E. Lines, H.Y. Hwang, S. Spälter, R.E. Slusher, S.-W. Cheng, J.S. Sanghera, I.D. Aggarwal, Large Kerr effect in bulk Se-based chalcogenide glasses. Opt. Lett. 25, 254 (2000)

    Article  CAS  Google Scholar 

  89. F. Sanchez, G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, Two- and three-photon nonlinear absorption in As2Se3 chalcogenide glass: theory and experiment. J. Nonlinear Opt. Phys. Mater. 13, 7 (2004)

    Article  CAS  Google Scholar 

  90. S.Y. Kim, M.J. Kang, S.Y. Choi, Nonlinear optical properties of As2Se3 thin films. Thin Solid Films 493, 207 (2007)

    Article  Google Scholar 

  91. E.C. Mägi, L.B. Fu, H.C. Nguyen, M.R.E. Lamont, D.I. Yeom, B.J. Eggleton, Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers. Opt. Express 24, 10324 (2007)

    Article  Google Scholar 

  92. S. Spälter, H.Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.-W. Cheong, R.E. Slusher, Strong self-phase modulation in planar chalcogenide glass waveguides. Opt. Lett. 27, 363 (2002)

    Article  Google Scholar 

  93. Q. Liu, B. Lu, X. Zhao, F. Gan, J. Mi, S. Qian, Non-resonant third-order non-linear optical properties of amorphous GeSe2 film. J. Non-Cryst. Solids 351, 3147 (2005)

    Article  CAS  Google Scholar 

  94. T.T. Sun, X.N. Xue, Y.W. Yang, C.G. Lin, S.X. Dai, X.H. Zhang, W. Ji, F.F. Chen, Correlating structure with third-order optical nonlinearity of chalcogenide glasses within a germanium-sulfur binary system. J. Non-Cryst. Solids 522, 119562 (2019)

    Article  CAS  Google Scholar 

  95. S. Smolorz, I. Kang, F. Wise, B.G. Aitken, N.F. Borrelli, Studies of optical non-linearities of chalcogenide and heavy-metal oxide glasses. J. Non-Cryst. Solids 256&257, 310 (1999)

    Article  CAS  Google Scholar 

  96. J. Requejo-Isidro, A.K. Mairaj, V. Pruneri, D.W. Hewak, M.C. Netti, J.J. Baumberg, Self refractive non-linearities in chalcogenide based glasses. J. Non-Cryst. Solids 317, 241 (2003)

    Article  CAS  Google Scholar 

  97. G. Boudebs, F. Sanchez, J. Troles, F. Smektala, Nonlinear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques. Opt. Commun. 199, 425 (2001)

    Article  CAS  Google Scholar 

  98. C. Qémard, F. Smektala, V. Couderc, A. Barthélémy, J. Lucas, Chalcogenide glasses with high non linear optical properties for telecommunications. J. Phys. Chem. Solids 62, 1435 (2001)

    Article  Google Scholar 

  99. J.M. Harbold, F.Ö. Frank, W. Wise, Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching. IEEE Photonics Technol. Lett. 14, 822 (2002)

    Article  Google Scholar 

  100. J.T. Gopinath, M. Soljacic, E.P. Ippen, V.N. Fuflyigin, W.A. King, M. Shurgalin, Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications. J. Appl. Phys. 96, 6931 (2004)

    Article  CAS  Google Scholar 

  101. A. Zakery, M. Hatami, Nonlinear optical properties of pulsed-laser-deposited GeAsSe films and simulation of a nonlinear directional coupler switch. J. Opt. Soc. Am. B 22, 591 (2005)

    Article  CAS  Google Scholar 

  102. M.R. Krogstad, S. Ahn, W. Park, J.T. Gopinath, Nonlinear characterization of Ge28Sb12Se60 bulk and waveguide devices. Opt. Express 23, 7870 (2015)

    Article  CAS  Google Scholar 

  103. T. Kuriakose, E. Baudet, T. Halenkovic, M.M.R. Elsawy, P. Nemec, V. Nazabal, G. Renversez, M. Chauvet, Measurement of ultrafast optical Kerr effect of Ge-Sb-Se chalcogenide slab waveguides by the beam self-trapping technique. Opt. Commun. 403, 352 (2017)

    Article  CAS  Google Scholar 

  104. Z. Li, K. Wang, J. Zhang, F. Chen, C. Lin, S. Dai, W. Ji, Study on correlation between network structure and third-order optical nonlinearity of chalcogenide glasses within a Ge-Sb-S ternary system. J. Non-Cryst. Solids 588, 121628 (2022)

    Article  CAS  Google Scholar 

  105. Z.H. Zhou, H. Nasu, T. Hashimoto, K. Kamiya, Non-linear optical properties and structure of Na2S-GeS2 glasses. J. Non-Cryst. Solids 215, 61 (1997)

    Article  CAS  Google Scholar 

  106. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, M. Minakata, Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching. Opt. Lett. 29, 265 (2004)

    Article  CAS  Google Scholar 

  107. D. Marchese, M. De Sario, A. Jha, A.K. Kar, E.C. Smith, Highly nonlinear GeS2-based chalcohalide glass for all-optical twin-core-fiber switching. J. Opt. Soc. Am. B 15, 2361 (1998)

    Article  CAS  Google Scholar 

  108. K. Fedus, G. Boudebs, C.B. de Araujo, M. Cathelinaud, F. Charpentier, V. Nazabal, Photoinduced effects in thin films of Te20As30Se50 glass with nonlinear characterization. Appl. Phys. Lett. 94, 061122 (2009)

    Article  Google Scholar 

  109. M. Dinu, F. Quochi, H. Garcia, Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett. 82, 2954 (2003)

    Article  CAS  Google Scholar 

  110. S. Serna, H. Lin, C. Alonso-Ramos, C. Lafforgue, X. Le Roux, K.A. Richardson, E. Cassan, N. Dubreuil, J. Hu, L. Vivien, Engineering third-order optical nonlinearities in hybrid chalcogenide-on-silicon platform. Opt. Lett. 44, 5009 (2019)

    Article  CAS  Google Scholar 

  111. G.R. Elliott, G.S. Murugan, J.S. Wilkinson, M.N. Zervas, D.W. Hewak, Chalcogenide glass microsphere laser. Opt. Express 18, 26720 (2010)

    Article  CAS  Google Scholar 

  112. J. Zhu, M. Zohrabi, K. Bae, T.M. Horning, M.B. Grayson, W. Park, J.T. Gopinath, Nonlinear characterization of silica and chalcogenide microresonators. Optica 6, 716 (2019)

    Article  CAS  Google Scholar 

  113. Y. Quiquempois, A. Villeneuve, D. Dam, K. Turcotte, J. Maier, G. Stegeman, S. Lacroix, Second-order nonlinear susceptibility in As2S3 chalcogenide thin glass films. Electron. Lett. 36, 733 (2000)

    Article  CAS  Google Scholar 

  114. J. Qiu, J. Si, K. Hirao, Photoinduced stable second-harmonic generation in chalcogenide glasses. Opt. Lett. 26, 914 (2001)

    Article  CAS  Google Scholar 

  115. E. Lopez-Lago, V. Couderc, L. Griscom, F. Smektala, A. Barthélémy, All-optical poling of a chalcohalide glass. Opt. Mater. 16, 413 (2001)

    Article  CAS  Google Scholar 

  116. R.L. Fork, C.V. Shank, A.M. Glass, A. Migus, M.A. Bosch, J. Shah, Picosecond dynamics of optically induced absorption in the band gap of As2S3. Phys. Rev. Lett. 43, 394 (1979)

    Article  CAS  Google Scholar 

  117. D.E. Ackley, J. Tauc, W. Paul, Picosecond relaxation of optically induced absorption in amorphous semiconductors. Phys. Rev. Lett. 43, 715 (1979)

    Article  CAS  Google Scholar 

  118. J. Orenstein, M.A. Kastner, V. Vaninov, Transient photoconductivity and photo-induced optical absorption in amorphous semiconductors. Philos. Mag. B 46, 23 (1982)

    Article  CAS  Google Scholar 

  119. E. Fazio, D. Hulin, V. Chumash, F. Michelotti, A.M. Andriesh, M. Bertolotti, On-off resonance femtosecond non-linear absorption of chalcogenide glassy films. J. Non-Cryst. Solids 168, 213 (1994)

    Article  CAS  Google Scholar 

  120. A.M. Andriesh, M.S. Iovu, S.D. Shutov, Chalcogenide non-crystalline semiconductors in optoelectronics. J. Non-Cryst. Solids 4, 631 (2002)

    CAS  Google Scholar 

  121. Y. Sakaguchi, K. Tamura, Accumulation and decay processes in photodarkening of amorphous chalcogenide. J. Phys. Chem. Solids 68, 911 (2007)

    Article  CAS  Google Scholar 

  122. R. Sharma, K. Prasai, D.A. Drabold, K.V. Adarsh, Ultrafast defect dynamics: A new approach to all optical broadband switching employing amorphous selenium thin films. AIP Adv. 5, 077164 (2015)

    Article  Google Scholar 

  123. V.A. Vasilyev, S.K. Pavlov, B.T. Kolomiets, The photostimulated light absorption in vitreous As2Se3 and As2S3, Proceeding of the International Conference Amorphous Semicond. 76 (Akad. Kiado, 1977) p. 189.

  124. M. Iijima, S. Kurita, Transient photoinduced phenomena in amorphous chalcogenide thin films. J. Appl. Phys. 51, 2103 (1980)

    Article  CAS  Google Scholar 

  125. S.G. Bishop, U. Strom, P.C. Taylor, Optically induced metastable paramagnetic states in amorphous semiconductors. Phys. Rev. B 15, 2278 (1977)

    Article  CAS  Google Scholar 

  126. A. Matsuda, H. Mizuno, T. Takayama, M. Saito, M. Kikuchi, “Stopping effect” on guided light in As-S films by a laser beam. Appl. Phys. Lett. 24, 314 (1974)

    Article  CAS  Google Scholar 

  127. L.E. Zou, B.X. Chen, L. Chen, Y.F. Yuan, M. Hamanaka, M. Iso, Fabrication of an As2S9 stripe waveguide with an optical stopping effect by exposure to ultraviolet irradiation. Appl. Phys. Lett. 88, 153510 (2006)

    Article  Google Scholar 

  128. S.-C. Wen, C.-W. Chang, C.-M. Lin, H. Liu, V.K.S. Hsiao, J. Yu, Z. Chen, Light-induced switching of a chalcogenide-coated side-polished fiber device. Opt. Commun. 334, 110 (2015)

    Article  CAS  Google Scholar 

  129. V. Kryshenik, Dynamic photoinduced changes of optical characteristics and effect of optical memory in amorphous As–S film-based waveguides. J. Non-Cryst. Solids 585, 121528 (2022)

    Article  CAS  Google Scholar 

  130. Y. Aoyagi, Y. Segawa, S. Namba, T. Suhara, H. Nishihara, H. Gamo, Dynamic behavior of the photodarkening process in As2S3 chalcogenide glass. Phys. Stat. Sol. A 67, 669 (1981)

    Article  CAS  Google Scholar 

  131. K. Tanaka, Transient-grating study of amorphous As2S3 films. J. Appl. Phys. 85, 2042 (1989)

    Article  Google Scholar 

  132. G. Rosenblum, B.G. Sfez, Z. Kotler, V. Lyubin, M. Klebanov, Nonlinear optical effects in chalcogenide photoresists. Appl. Phys. Lett. 75, 3249 (1999)

    Article  CAS  Google Scholar 

  133. K. Tanaka, Spectral dependence of photoexpansion in As2S3 glass. Philos. Mag. Lett. 79, 25 (1999)

    Article  CAS  Google Scholar 

  134. P. Hari, C. Cheney, G. Luepke, S. Singh, N. Tolk, J.S. Sanghera, I.D. Aggarwal, Wavelength selective materials modification of bulk As2S3 and As2Se3 by free electron laser irradiation. J. Non-Cryst. Solids 270, 265 (2000)

    Article  CAS  Google Scholar 

  135. B. Xue, V. Nazabal, M. Piasecki, L. Calvez, A. Wojciechowski, P. Rakus, P. Czaja, I.V. Kityk, Photo-induced effects in GeS2 glass and glass–ceramics stimulated by green and IR lasers. Mater. Lett. 73, 14 (2012)

    Article  CAS  Google Scholar 

  136. C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, R. Wang, Mid-infrared femtosecond laser induced damages in As2S3 and As2Se3 chalcogenide glasses. Sci. Rept. 7, 6497 (2017)

    Article  Google Scholar 

  137. M. Xie, S. Dai, C. You, P. Zhang, C. Yang, W. Wei, G. Li, R. Wang, Correlation among structure, water peak absorption, and femtosecond laser ablation properties of Ge−Sb−Se chalcogenide glasses. J. Phys. Chem. C 122, 1681 (2018)

    Article  CAS  Google Scholar 

  138. A.V. Belykh, O.M. Efimov, L.B. Glebov, Yu.A. Matveev, A.M. Mekryukov, M.D. Mikhailov, K. Richardson, Photo-structural transformation of chalcogenide glasses under non-linear absorption of laser radiation. J. Non-Cryst. Solids 213&214, 330 (1997)

    Article  CAS  Google Scholar 

  139. N. Hô, J.M. Laniel, R. Vallée, A. Villeneuve, Photosensitivity of As2S3 chalcogenide thin films at 15 mm. Opt. Lett. 28, 965 (2003)

    Article  Google Scholar 

  140. K. Tanaka, Mid-gap photon effects in As2S3 glass. Philos. Mag. Lett. 84, 601 (2004)

    Article  CAS  Google Scholar 

  141. O.M. Efimov, L.B. Glebov, K.A. Richardson, E. Van Stryland, T. Cardinal, S.H. Park, M. Couzi, J.L. Brunéel, Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses. Opt. Mater. 17, 379 (2001)

    Article  CAS  Google Scholar 

  142. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, R. Vallée, Direct femtosecond laser writing of waveguides in As2S3 thin films. Opt. Lett. 29, 748 (2004)

    Article  CAS  Google Scholar 

  143. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett. 71, 3329 (1997)

    Article  CAS  Google Scholar 

  144. C. Meneghini, A. Villeneuv, photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides. J. Opt. Soc. Am. B 15, 2946 (1998)

    Article  CAS  Google Scholar 

  145. A.P. Aleksandrov, A.A. Babin, A.M. Kiselev, D.I. Kulagin, V.V. Lozhkarev, A.N. Stepanov, Formation of microstructures in As2S3 by a femtosecond laser pulse train. Quant. Electron. 31, 398 (2001)

    Article  CAS  Google Scholar 

  146. A. Velea, M. Popescu, F. Sava, A. Lőrinczi, I.D. Simandan, G. Socol, I.N. Mihailescu, N. Stefan, F. Jipa, M. Zamfirescu, Photoexpansion and nano-lenslet formation in amorphous As2S3 thin films by 800 nm femtosecond laser irradiation. J. Appl. Phys. 112, 033105 (2012)

    Article  Google Scholar 

  147. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G.A. Ozin, M. Wegener, G. von Freymann, Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses. Adv. Mater. 18, 265 (2006)

    Article  CAS  Google Scholar 

  148. S. Levy, M. Klebanov, A. Zadok, High-Q ring resonators directly written in As2S3 chalcogenide glass films. Photon. Res. 3, 65 (2015)

    Article  Google Scholar 

  149. S. Juodkazis, H. Misawa, O.A. Louchev, K. Kitamura, Femtosecond laser ablation of chalcogenide glass: explosive formation of nano-fibres against thermo-capillary growth of micro-spheres. Nanotechnology 17, 4802 (2006)

    Article  Google Scholar 

  150. Y. Zhang, Y. Xu, P. Zhang, C. You, S. Zhang, M. Xie, N. Long, J. Tang, S. Dai, Femtosecond-laser-induced submicron grating periodic structures on As2S3 and As35Se65 glasses. Opt. Laser Technol. 108, 306 (2018)

    Article  CAS  Google Scholar 

  151. P. Lucas, E.A. King, A. Doraiswamy, Comparison of photostructural changes induced by continuous and pulsed laser in chalcogenide glass. J. Optoelectron. Adv. Mater. 8, 776 (2006)

    CAS  Google Scholar 

  152. G. Dong, L. Zhang, M. Peng, J. Qiu, G. Lin, F. Luo, B. Qian, Q. Zhao, Microstructural modification of chalcogenide glasses by femtosecond laser. J. Non-Cryst. Solids 357, 2392 (2011)

    Article  CAS  Google Scholar 

  153. S.H. Messaddeq, J.P. Bérubé, M. Bernier, I. Skripachev, R. Vallée, Y. Messaddeq, Study of the photosensitivity of GeS binary glasses to 800nm femtosecond pulses. Opt. Express 20, 2824 (2012)

    Article  CAS  Google Scholar 

  154. T. Anderson, L. Petit, N. Carlie, J. Choi, J. Hu, A. Agarwal, L. Kimerling, K. Richardson, M. Richardson, Femtosecond laser photo-response of Ge23Sb7S70 films. Opt. Express 16, 20081 (2008)

    Article  CAS  Google Scholar 

  155. L. Zhu, D. Yang, L. Wang, J. Zeng, Q. Zhang, M. Xie, P. Zhang, S. Dai, Optical and thermal stability of Ge-As-Se chalcogenide glasses for femtosecond laser writing. Opt. Mater. 85, 220 (2018)

    Article  CAS  Google Scholar 

  156. M. Hughes, W. Yang, D. Hewak, Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass. Appl. Phys. Lett. 90, 131113 (2007)

    Article  Google Scholar 

  157. D.G. MacLachlan, R.R. Thomson, C.R. Cunningham, D. Lee, Mid-infrared volume phase gratings manufactured using ultrafast laser inscription. Opt. Mater. Express 3, 1616 (2013)

    Article  Google Scholar 

  158. X. Liu, W. Zhang, W. Zhao, R. Stoian, G. Cheng, Expanded-core waveguides written by femtosecond laser irradiation in bulk optical glasses. Opt. Express 22, 28771 (2014)

    Article  Google Scholar 

  159. M. Li, S. Huang, Q. Wang, H. Petek, K.P. Chen, Nonlinear lightwave circuits in chalcogenide glasses fabricated by ultrafast laser. Opt. Lett. 39, 693 (2014)

    Article  CAS  Google Scholar 

  160. B. McMillen, M. Li, S. Huang, B. Zhang, K.P. Chen, Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass. Opt. Lett. 39, 3579 (2014)

    Article  CAS  Google Scholar 

  161. T. Gretzinger, S. Gross, M. Ams, A. Arriola, M.J. Withford, Ultrafast laser inscription in chalcogenide glass: thermal versus athermal fabrication. Opt. Mater. Express 5, 2862 (2015)

    Article  CAS  Google Scholar 

  162. M. Ramos, V. Bharadwaj, B. Sotillo, B. Gholipour, A.N. Giakoumaki, R. Ramponi, S.M. Eaton, C. Soci, Photonic implementation of artificial synapses in ultrafast laser inscribed waveguides in chalcogenide glass. Appl. Phys. Lett. 119, 031104 (2021)

    Article  CAS  Google Scholar 

  163. O. Caulier, D. Le Coq, L. Calvez, E. Bychkov, P. Masselin, Free carrier accumulation during direct laser writing in chalcogenide glass by light filamentation. Opt. Express 19, 20088 (2011)

    Article  CAS  Google Scholar 

  164. V. Kadan, I. Blonskyi, Y. Shynkarenko, A. Rybak, L. Calvez, B. Mytsyk, O. Spotyuk, Single-pulse fs laser fabrication of concave microlens- and micromirror arrays in chalcohalide glass. Opt. Laser Techonol. 96, 283 (2017)

    Article  CAS  Google Scholar 

  165. Z. Yang, N.C. Anheier Jr., H.A. Qiao, P. Lucas, Simultaneous microscopic measurements of photodarkening and photoexpansion in chalcogenide films. J. Phys. D 42, 135412 (2009)

    Article  Google Scholar 

  166. K. Tanaka, Relation between photodarkening and photoexpansion in As2S3 glass. Phys. Status Solidi B 249, 2019 (2012)

    Article  CAS  Google Scholar 

  167. P. Masselin, D. Le Coq, E. Bychkov, Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate. Opt. Mater. 33, 872 (2011)

    Article  CAS  Google Scholar 

  168. V.K. Tikhomirov, P. Hertogen, G.J. Adriaenssens, C. Glorieux, R. Ottenburgs, Anisotropic laser crystallization of a-Se. J. Non-Cryst. Solids 227–230, 732 (1998)

    Article  Google Scholar 

  169. Q. Li, D. Qi, X. Wang, X. Shen, R. Wang, K. Tanaka, Femto- and nano-second laser-induced damages in chalcogenide glasses. Jpn. J. Appl. Phys. 58, 080911 (2019)

    Article  CAS  Google Scholar 

  170. Y. Shen, S.B. Jester, T. Qi, E.J. Reed, Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2. Nat. Mater. 15, 60 (2016)

    Article  CAS  Google Scholar 

  171. K. Tanaka, Light intensity dependence of photodarkening in amorphous As2S3 films. Thin Solid Films 157, 3541 (1988)

    Article  Google Scholar 

  172. M. Bertolotti, F. Michelotti, V. Chumash, P. Cherbari, M. Popescu, S. Zamfira, The kinetics of the laser induced structural changes in As2S3 amorphous films. J. Non-Cryst. Solids 192–193, 657 (1995)

    Article  Google Scholar 

  173. K. Tanana, A. Saitoh, N. Terakado, Giant photo-expansion in chalcogenide glass. J. Optoelectron. Adv. Mater. 8, 2058 (2006)

    Google Scholar 

  174. K. Tanaka, Free-carrier generation in amorphous semiconductors by intense subgap excitation. Appl. Phys. Lett. 73, 3435 (1998)

    Article  CAS  Google Scholar 

  175. K. Kajihara, Y. Ikuta, M. Hirano, H. Hosono, Power dependence of defect formation in SiO2 glass by F2 laser irradiation. Appl. Phys. Lett. 81, 3164 (2002)

    Article  CAS  Google Scholar 

  176. K. Tanaka, H. Sanjoh, Photodoping dynamics in the As/As-S system. J. Appl. Phys. 74, 1106 (1993)

    Article  CAS  Google Scholar 

  177. A. Bourgrade, J. Lumeau, Large aperture, highly uniform narrow bandpass Fabry-Perot filter using photosensitive As2S3 thin films. Opt. Lett. 44, 351 (2019)

    Article  Google Scholar 

  178. Y. Tian, W. Wang, N. Wu, X. Zou, C. Guthy, X. Wang, A miniature fiber optic refractive index sensor built in a MEMS-based microchannel. Sensors 11, 1078 (2011)

    Article  CAS  Google Scholar 

  179. K. Tanaka, Photo-induced dynamical changes in refractive index in amorphous As-S films. Solid State Commun. 28, 541 (1978)

    Article  CAS  Google Scholar 

  180. I. Mirza, N.M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, T. Mocek, Ultrashort pulse laser ablation of dielectrics: thresholds, mechanisms, role of breakdown. Sci. Rept. 6, 39133 (2016)

    Article  CAS  Google Scholar 

  181. B. Rethfeld, D.S. Ivanov, M.E. Garcia, S.I. Anisimov, Modelling ultrafast laser ablation. J. Phys. D 50, 193001 (2017)

    Article  Google Scholar 

  182. L. Liu, X. Zheng, X. Xiao, Y. Xu, X. Cui, J. Cui, C. Guo, J. Yang, H. Guo, Femtosecond laser ablation and photo-induced effects of As40S60, Ga0.8As39.2S60 and Ga0.8As29.2Sb10S60 chalcogenide glasses. Opt. Mater. Express 9, 3582 (2019)

    Article  CAS  Google Scholar 

  183. Q. Zhang, H. Lin, B. Jia, L. Xu, M. Gu, Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses. Opt. Express 18, 6885 (2010)

    Article  CAS  Google Scholar 

  184. E.N. Glezer, E. Mazur, Ultrafast-laser driven micro-explosions in transparent materials. Appl. Phys. Lett. 71, 882 (1997)

    Article  CAS  Google Scholar 

  185. A. Couairona, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rept. 441, 47 (2007)

    Article  Google Scholar 

  186. J.A. Van Vechten, R. Tsu, F.W. Saris, Nonthermal pulsed laser annealing of Si; Plasma annealing. Phys. Lett. 74A, 422 (1979)

    Article  Google Scholar 

  187. K. Tanaka, Maximal photodarkening in the Ge–As–S glass system. Phys. Status Solidi B 258, 2100180 (2021)

    Article  CAS  Google Scholar 

  188. S.I. Nesterov, M.E. Boyko, M. Krbal, A.V. Kolobov, On the ultimate resolution of As2S3-based inorganic resists. J. Non-Cryst. Solids 563, 120816 (2021)

    Article  CAS  Google Scholar 

  189. K. Tanaka, T. Gotoh, K. Sugawara, Nano-scale phase changes in Ge-Sb-Te films with electrical scanning probe microscopes. J. Optoelectron. Adv. Mater. 6, 1133 (2004)

    CAS  Google Scholar 

  190. M. Grundmann, The Physics of Semiconductors (Springer, Berlin, 2006)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Emeritus Professor K. Shimakawa (Gifu University) and Professor S. Kasap (University of Saskatchewan) for continuous, invaluable supports.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript had been written by KT, and AS commented on that, which was modified therein. The two authors read and approved the final manuscript.

Corresponding author

Correspondence to Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Free-electron behaviors can in principle be understood using the so-called Drude model (developed for metals) [34]

Fig. 14
figure 14

A graphical representation of ε(ω)

. It gives the dielectric function;

$$\varepsilon (\omega ) \approx {1}{-}\omega_{{\text{p}}}^{{2}} /\omega^{{2}},$$
(10)

as shown in the figure, where ωp is the plasma frequency defined as ωp2 = Ne2/ε0m (N is the free electron density, e the electron charge, ε0 the vacuum permittivity, and m an electron mass). Here, electron-lattice collision effects (τ ≈ 10–12–10–13 s) and a matrix permittivity are neglected for simplicity. For instance, N ≈ 1021/cm3 gives ωp ≈ 1015 s–1, which corresponds to light with λ ≈ 1 μm. Hence, we could envisage that plasma effects, which may be monitored at λ ≈ 1 μm, vary as follows; with increasing N at N < 1021/cm3, the refractive index (n ~ ε1/2) decreases as Δn ≈ e2ΔN/(2nεω2m), and at N > 1021/cm3 ε(ω) < 0, i.e., the plasma abruptly becomes optically reflective.

On the other hand, trapped electrons modify absorption spectra at ħω = Et, where Et is the trap depth. The effect on n(ω) varies with ω and Et, and it can be analyzed using the Kramers-Krönig relation. Simply, Δn(ω) > or < 0 for ħω < or > Et. Otherwise, if all the below-gap states are filled with trapped carriers, a blue shift of the optical absorption edge may emerge through a mechanism as the so-called Burstein-Moss effect [190]. (Note that the BM effect appears in crystalline semiconductors, while similar phenomenon may occur at low temperatures in amorphous semiconductors when Urbach-edge states are completely occupied [120]). Then, the Moss rule predicts that the blue shift of the absorption edge decreases the refractive index at transparent wavelengths, which may cause self-defocusing of an exciting light beam.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K., Saitoh, A. Pulsed light effects in amorphous As2S3: review. J Mater Sci: Mater Electron 33, 22029–22052 (2022). https://doi.org/10.1007/s10854-022-08989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08989-x

Navigation