Skip to main content
Log in

Phase composition, crystal structure, and microwave dielectric properties of 0.8Mg2SiO4–0.2Ca0.9Sm0.2/3Al4x/3Ti1−xO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.8Mg2SiO4–0.2Ca0.9Sm0.2/3Al4x/3Ti1−xO3 (x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25) ceramics with zero τf and high Q × f value were prepared by a traditional solid-state reaction method. The influences of Al content on phase evolution, sintering behavior, microstructure and microwave dielectric properties of ceramics have been systematically investigated. With the increase of x, the exchange of Ti4+ and Al3+ at B site leads to the decrease of dielectric constant and the increase of quality factor Q × f. The τf increases first and then decreases to close to 0 with a rise of x from 0.05 to 0.025. The results show that 0.8Mg2SiO4–0.2Ca0.9Sm0.2/3Al0.8/3Ti0.8O3 samples sintered at 1410 °C for 3 h exhibited excellent microwave dielectric properties: εr = 10.69, Q × f = 70,769 GHz, τf = − 0.66 ppm/°C. Therefore 0.8Mg2SiO4–0.2Ca0.9Sm0.2/3Al4x/3Ti1−xO3 ceramics are considered as potential candidates for microwave dielectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon resonable request.

References

  1. M.K. Du, L.G. Li, L.Z. Ni et al., Ultra-high Q Ba (Mg1/3Ta0.675)O3 microwave dielectric ceramics realized by slowly cooling step process and the simulation design for hairpin dielectric filters. Ceram. Int. 47(14), 19716–19726 (2021)

    Article  CAS  Google Scholar 

  2. W.C. Lou, M.M. Mao, K.X. Song et al., Low dielectric constant cordierite-based microwave dielectric ceramics for 5G/6G telecommunications. J. Eur. Ceram. Soc. 42(6), 2820–2826 (2022)

    Article  CAS  Google Scholar 

  3. M.T. Ma, K.X. Song, Y.P. Ji et al., 5G microstrip patch antenna and microwave dielectric properties of cold sintered LiWVO6-K2MoO4 composite ceramics[J]. Ceram. Int. 47(13), 19241–19246 (2021)

    Article  CAS  Google Scholar 

  4. W.C. Lou, K.X. Song, F. Hussain et al., Microwave dielectric properties of Mg1.8R0.2Al4Si5O18 (R = Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Zn) cordierite ceramics and their application for 5G microstrip patch antenna. J. Eur. Ceram. Soc. 42(5), 2254–2260 (2022)

    Article  CAS  Google Scholar 

  5. Y.M. Lai, X.L. Tang, X. Huang et al., Phase composition, crystal structure and microwave dielectric properties of Mg2 – xCuxSiO4 ceramics. J. Eur. Ceram. Soc. 38(4), 1508–1516 (2021)

    Article  Google Scholar 

  6. W. Wei, L. Tang, W. Bai et al., Microwave dielectric properties of (1-x)(Mg0.4Zn0.6)2SiO4-xCaTiO3 composite ceramics. J. Mater. Sci. Mater. Electron. 25(8), 3601–3607 (2014)

    Article  Google Scholar 

  7. Z. Liang, X.N. Liang, G. Wang et al., Microwave dielectric properties and sintering behaviors of Zn1.8SiO3.8 ceramics. J. Mater. Sci. Mater. Electron. 32(1), 1–7 (2021)

    Article  Google Scholar 

  8. G. Dou, D.X. Zhou, M. Guo et al., Low-temperature sintered Mg2SiO4–CaTiO3 ceramics with near-zero temperature coefficient of resonant frequency. J. Mater. Sci. Mater. Electron. 24, 1431–1438 (2013)

    Article  CAS  Google Scholar 

  9. K.H. Yoon, W.S. Kim, E.S. Kim, Dependence of the octahedral bond valence on microwave dielectric properties of Ca1–xSm4x/3TiO3 ceramics. Mater. Sci. Eng. B 99(1–3), 112–115 (2003)

    Article  Google Scholar 

  10. M.S. Fu, L. Ni, X.M. Chen, Abnormal variation of microwave dielectric properties in A/B site co-substituted (Ca1 – 0.3xLa0.2x)(Mg1/3Ta2/3)1–xTixO3 complex perovskite ceramic. J. Eur. Ceram. Soc. 33(4), 813–823 (2013)

    Article  CAS  Google Scholar 

  11. J. Qu, F. Liu, C. Yuan et al., Microwave dielectric properties of 0.2SrTiO3-0.8Ca0.61Nd0.26Ti1–xAl4x/3O3 ceramics. Mater. Sci. Eng. B 191, 15–20 (2015)

    Article  CAS  Google Scholar 

  12. Q.Q. Feng, P.Z. Fu et al., Microwave dielectric properties of low-fired (1 – x)Mg2SiO4 –xCa0.9Sr0.1TiO3 ceramics by using nanopowders from high energy ball milling. J. Mater. Sci. Mater. Electron. 28, 5398–15404 (2017)

    Article  Google Scholar 

  13. ]S. He, K.G. Wang, X.J. Zhou, Phase structure and microwave dielectric properties of 0.85(0.74CaTiO3-0.26SmAlO3)-0.15Ca1.15Sm0.85Al 0.85Ti0.15O4 composite ceramics prepared by reaction-sintering process. Ceram. Int. 47(11), 15580–15584 (2021)

    Article  CAS  Google Scholar 

  14. A. Zhang, H.Q. Fan, D.W. Hou et al., A novel low-loss (1-x)(Ca0.8Sr0.2)TiO3-xSmAlO3 microwave dielectric ceramics with near-zero temperature coefficient. J. Alloys Compd. 898, 1–8 (2021)

    Google Scholar 

  15. Y.F. Liu, Y.H. Tan, S.G. Liu et al., Dielectric properties, microstructure and phase evolution of non-stoichiometric 0.9Mg2 + xSiO4 + x-0.1CaTiO3 microwave dielectric ceramics. Ceram. Int. 47(23), 33798–33804 (2021)

    Article  CAS  Google Scholar 

  16. M. Ando, H. Ohsato, I. Kagomiya et al., Quality factor of forsterite for ultrahigh frequency dielectrics depending on synthesis proces. Jpn J. Appl. Phys. 47(9), 7729–7731 (2008)

    Article  CAS  Google Scholar 

  17. B.J. Li, S.Y. Wang, Y.H. Liao et al., Low loss dielectric material system of (1 x)(Mg0.95Co0.05)2(Ti0.95Sn0.05)O4 – x(Ca0.8Sm0.4/3)TiO3 at microwave frequency with a near-zero temperature coefficient of the resonant frequency. J. Ceram. Soc. Jpn 124(3), 208–212 (2016)

    Article  CAS  Google Scholar 

  18. H. Chen, Phase evolution and microwave dielectric properties of Ca0.61Nd0.26Ti1–x(Al1/2Nb1/2)xO3 ceramics (0 ≤ x ≤ 0.2). Ceram. Silik. 61(1), 1–5 (2016)

    Google Scholar 

  19. V. Sivasubramanian, V.R.K. Murthy, B. Viswanathan, Microwave dielectric properties of certain simple alkaline earth perovskite compounds as a function of tolerance factor. Jpn. J. Appl. Phys. 36(1), 194–197 (1997)

    Article  CAS  Google Scholar 

  20. E.S. Kim, C.J. Jeon, J.S. Kim et al., Effects of crystal structure on microwave dielectric properties of ceramics. J. Korean Ceram. Soc. 45, 251–255 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for Jiaxing Leading Innovative and Enterpreneurial Teams.

Author information

Authors and Affiliations

Authors

Contributions

CT contributed to the experimentation, data analysis, collation, and manuscript preparation. YL contributed to the methodology, software, and theorization. XY contributed to the investigation and experimentation. SL and JT contributed to the theorization. WG contributed to the validation. FM contributed to writing, reviewing, and editing.

Corresponding authors

Correspondence to Jianxi Tong or Fancheng Meng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Liu, Y., Yan, X. et al. Phase composition, crystal structure, and microwave dielectric properties of 0.8Mg2SiO4–0.2Ca0.9Sm0.2/3Al4x/3Ti1−xO3 ceramics. J Mater Sci: Mater Electron 33, 22119–22126 (2022). https://doi.org/10.1007/s10854-022-08981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08981-5

Navigation