Skip to main content
Log in

Effects of ZnO additive on crystalline phase and microwave dielectric properties of 0.90Al2O3–0.10TiO2 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.90Al2O3–0.10TiO2 doped with x mol% ZnO (x = 0.2, 0.3, 0.4, 0.5) microwave dielectric ceramics, have been prepared by the conventional solid-state method with various sintering temperatures. A relationship between phase composition and microwave dielectric properties was systematically discussed for millimeter-wave applications. The formation of Al2TiO5 impurity phase was inhibited by ZnO addition without annealing treatment. The existence of Al2TiO5 impurity phase deteriorated seriously the microwave dielectric properties, especially quality factor (Q × f) and temperature coefficient (τ f ). Due to the liquid sintering effect, the addition of ZnO could reduce the sintering temperature to 1300 °C. To a large extend, ZnO additive improved the density of 0.90 Al2O3–0.10 TiO2 ceramics, and ultimately enhanced the microwave dielectric properties. The ZnAl2O4 impurity phase could also enhance the Q × f value and permittivity (ε r ) of 0.90Al2O3–0.10TiO2 ceramics. Excellent microwave dielectric properties was achieved for 0.4 mol% ZnO doped 0.90Al2O3–0.10TiO2 ceramics sintered at 1300 °C for 4 h: ε r  = 12.4, Q × f = 159,000 GHz, τ f  = −0.2 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.J. Cava, J. Mater. Chem. 11(1), 54 (2001)

    Article  Google Scholar 

  2. M.T. Sebastian, Dielectric Materials for Wireless Communication, 1st edn. (Elsevier Science, San Diego, 2008), pp. 16–24

  3. W. Wersing, Curr. Opin. Solid State Mater. Sci. 1(5), 715 (1996)

    Article  Google Scholar 

  4. Z.F. Wang, B.Y. Huang, L.X. Wang, Z.X. Fu, Q.T. Zhang, J. Mater. Sci-Mater. Electron. 26(6), 4273 (2015)

    Article  Google Scholar 

  5. B.Y. Huang, Z.F. Wang, T. Chen, L.X. Wang, Z.X. Fu, Q.T. Zhang, J. Mater. Sci-Mater. Electron. 26(5), 3375 (2015)

    Article  Google Scholar 

  6. H. Ohsato, J. Ceram. Soc. Jpn. 113(1323), 703 (2005)

    Article  Google Scholar 

  7. M. Kono, H. Takagi, T. Tatekawa, H. Tamura, J. Eur. Ceram. Soc. 26(10), 1909 (2006)

    Article  Google Scholar 

  8. N.M. Alford, S.J. Penn, J. Appl. Phys. 80(10), 5895 (1996)

    Article  Google Scholar 

  9. S.B. Narang, S. Bahel, J. Ceram. Process. Res. 11(3), 316 (2010)

    Google Scholar 

  10. C.L. Huang, J.J. Wang, C.Y. Huang, Mater. Lett. 59(28), 3746 (2005)

    Article  Google Scholar 

  11. D.X. Zhou, R.G. Sun, S.P. Gong, Y.X. Hu, Ceram. Int. 37(7), 2377 (2011)

    Article  Google Scholar 

  12. J. Dhanya, A.N. Unnimaya, R. Ratheesh, J. Mater. Sci-Mater. Electron. 25(10), 4617 (2014)

    Article  Google Scholar 

  13. K.X. Song, S.Y. Wu, X.M. Chen, Mater. Lett. 61(16), 3357 (2007)

    Article  Google Scholar 

  14. G. Ramesh et al., Optoelectron. Adv. Mat. 7(11–12), 965 (2013)

    Google Scholar 

  15. W.C. Tzou et al., Mater. Res. Bull. 38(6), 981 (2003)

    Article  Google Scholar 

  16. C.F. Yang et al., Mater. Lett. 57(19), 2945 (2003)

    Article  Google Scholar 

  17. Z. Qilong, Y. Hui, W. Huanping, J Zhejiang Univ Eng Sci. 40(8), 1450 (2006)

    Google Scholar 

  18. H. Erkalfa, Z. Misirli, T. Baykara, Ceram. Int. 24(2), 81 (1998)

    Article  Google Scholar 

  19. D.W. Kim, B. Park, J.H. Chung, K. Sun. Hong, Jpn. J. Appl. Phys. 39(5R), 2696 (2000)

  20. C.L. Huang, J.J. Wang, C.Y. Huang, J. Am. Ceram. Soc. 90(5), 1487 (2007)

    Article  Google Scholar 

  21. J. Molla, R. Heidinger, A. Ibarra, J. Nucl. Mater. 212, 1029 (1994)

    Article  Google Scholar 

  22. Y. Ohishi, Y. Miyauchi, H. Ohsato, K. Kakimoto, Jpn. J. Appl. Phys. 43(6A), L749 (2004)

    Article  Google Scholar 

  23. B. Hakki, P. Coleman, IRE Trans. MTT. 8(4), 402 (1960)

    Article  Google Scholar 

  24. W.E. Courtney, IEEE Trans. MTT. 18(8), 476 (1970)

    Article  Google Scholar 

  25. E.M. Levin, H.F. McMurdie, Phase Diagrams for Ceramists, 1975 Supplement, 2nd edn. (American Ceramic Society, New York, 1975), p. 135

  26. K.P. Surendran, N. Santha, P. Mohanan, M.T. Sebastian, Eur. Phys. J. B 41(3), 301 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (Project No. SKL201309SIC), as well as Science and Technology Projects of Guangdong Province (Project No. 2011A091103002). College Industrialization Project of Jiangsu Province (JHB2012-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qitu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Huang, B., Chen, T. et al. Effects of ZnO additive on crystalline phase and microwave dielectric properties of 0.90Al2O3–0.10TiO2 ceramics. J Mater Sci: Mater Electron 27, 2687–2692 (2016). https://doi.org/10.1007/s10854-015-4078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4078-9

Keywords

Navigation