Skip to main content
Log in

Effect of co-substitution of Na0.5Bi0.5TiO3 and CaTiO3 on the structure and properties of BiFeO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ion substitution was the most efficient way for BiFeO3 modification. In this work, polar Na0.5Bi0.5TiO3 and non-polar CaTiO3 were chosen to modify BiFeO3, and the effects of Na0.5Bi0.5TiO3 and CaTiO3 co-substitution on the crystal structure, dielectric, ferroelectric and magnetic properties of BiFeO3 ceramics were investigated. All ceramics exhibited rhombohedral R3c phase with dense microstructure. Two dielectric anomalies were observed, one related to the valence change of Fe ions and the other to the ferroelectric phase transition. The DSC and dielectric analysis confirmed that the Curie temperature TC linearly increased with increasing Na0.5Bi0.5TiO3 content, while the magnetic transition temperature TN nearly unchanged. Meanwhile, the leakage current of the ceramic samples with Na+ was three orders of magnitude lower than that of a sample without Na+ ion. Due to the decrease in leakage current density, the breakdown field strength and piezoelectric properties were improved. In addition, the magnetic properties of all co-substituted ceramics were improved to a certain extent, which indicated that the co-doping of A-site and B-site affected the magnetic properties of the present ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

A submission to the journal implies that materials described in the manuscript, including all relevant raw data, will be freely available to any researcher wishing to use them for non-commercial purposes, without breaching participant confidentiality.

References

  1. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309(5733), 391–392 (2005)

    Article  CAS  Google Scholar 

  2. C. Chappert, A. Fert, F.N. Van Dau, The emergence of spin electronics in data storage. Nat. Mater. 6(11), 813–823 (2007)

    Article  CAS  Google Scholar 

  3. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima et al., Magnetic control of ferroelectric polarization. Nature. 426(6962), 55–58 (2003)

    Article  CAS  Google Scholar 

  4. K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58(4), 321–448 (2009)

    Article  CAS  Google Scholar 

  5. N.A. Spaldin, R. Ramesh, Advances in magnetoelectric multiferroics. Nat. Mater. 18(3), 203–212 (2019)

    Article  CAS  Google Scholar 

  6. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104(29), 6694–6709 (2000)

    Article  CAS  Google Scholar 

  7. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 299(5613), 1719–1722 (2003)

    Article  CAS  Google Scholar 

  8. S.B. Cheng, M.L. Li, S.Q. Deng, S.Y. Bao, P.Z. Tang et al., Manipulation of magnetic properties by oxygen vacancies in multiferroic YMnO3. Adv. Funct. Mater. 26(21), 3589–3598 (2016)

    Article  CAS  Google Scholar 

  9. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71(1), 14113 (2005)

    Article  CAS  Google Scholar 

  10. D. Lebeugle, D. Colson, A. Forget, M. Viret, Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 91(2), 022907 (2007)

    Article  CAS  Google Scholar 

  11. B.B. Van Aken, T.T.M. Palstra, A. Filippetti, N.A. Spaldin, The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3(3), 164–170 (2004)

    Article  CAS  Google Scholar 

  12. D.P. Chen, Y. Du, X.L. Wang, Z.X. Cheng, S.X. Dou et al., Oxygen-vacancy effect on structural, magnetic, and ferroelectric properties in multiferroic YMnO3 single crystals. J. Appl. Phys. 111, 43 (2012)

    Google Scholar 

  13. J. Liu, T.L. Sun, X.Q. Liu, H. Tian, T.T. Gao et al., A novel room-temperature multiferroic system of hexagonal Lu1-xInxFeO3. Adv. Funct. Mater. 28(13), 1706062 (2018)

    Article  CAS  Google Scholar 

  14. L. Lin, H.M. Zhang, M.F. Liu, S. Shen, S. Zhou et al., Hexagonal phase stabilization and magnetic orders of multiferroic Lu1-xScxFeO3. Phys. Rev. B 93(7), 075146 (2016)

    Article  CAS  Google Scholar 

  15. L.W. Martin, R. Ramesh, Multiferroic and magnetoelectric heterostructures. Acta Mater. 60(6–7), 2449–2470 (2012)

    Article  CAS  Google Scholar 

  16. S.X. Zhang, L. Wang, Y. Chen, D.L. Wang, Y.B. Yao et al., Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics. J. Appl. Phys. 111(7), 74105 (2012)

    Article  CAS  Google Scholar 

  17. J. Chen, J.E. Daniels, J. Jian, Z. Cheng, S. Zhang et al., Origin of large electric-field-induced strain in pseudo-cubic BiFeO3-BaTiO3 ceramics. Acta Mater. 197, 1–9 (2020)

    Article  CAS  Google Scholar 

  18. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu et al., Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84(10), 1731–1733 (2004)

    Article  CAS  Google Scholar 

  19. G.L. Yuan, S.W. Or, Y.P. Wang, Z.G. Liu, J.M. Liu et al., Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid. State. Commun. 138(2), 76–81 (2006)

    Article  CAS  Google Scholar 

  20. Y.H. Lin, Q. Jiang, Y. Wang, C.W. Nan, L. Chen et al., Enhancement of ferromagnetic properties in BiFeO3 polycrystalline ceramic by La doping. Appl. Phys. Lett. 90(17), 123 (2007)

    Article  CAS  Google Scholar 

  21. G. Catalan, K. Sardar, N.S. Church, J.F. Scott, S. Redfern et al., Effect of chemical substitution on the Néel temperature of multiferroic Bi1-xCaxFeO3. Phys. Rev. B 79(21), 212451 (2009)

    Article  CAS  Google Scholar 

  22. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3-0.1BaTiO3. Phys. Rev. Lett. 101(24), 247602 (2008)

    Article  CAS  Google Scholar 

  23. F. Prihor, A. Ianculescu, L. Mitoseriu, P. Postolache, L. Curecheriu et al., Functional properties of the (1-x)BiFeO3-xBaTiO3 solid solutions. Ferroelectrics. 391(1), 76–82 (2009)

    Article  CAS  Google Scholar 

  24. S. Sharma, M.P. Cruz, J.M. Siqueiros, O. Raymond-Herrera, V.E. Alvarez et al., Investigation of electrical, magneto-dielectric and transport properties of multiferroic (1-x)BiFeO3–(x)BaSr0.7Ti0.3O3 solid solutions. J. Marter Sci-Mater El 30(8), 7447–7459 (2019)

    Article  CAS  Google Scholar 

  25. S. Sharma, P. Kumar, V. Singh, R.K. Dwivedi, J.M. Siqueiros et al., Structural and electrical behavior of (0.70)BiFe1 – xCoxO3–(0.30)PbTiO3 solid solutions prepared by simple sol-gel route. ECS J. Solid State Sc 10(9), 093006 (2021)

    CAS  Google Scholar 

  26. S. Sharma, H.A. Reshi, J.M. Siqueiros, O.R. Herrera, Stability of rhombohedral structure and improved dielectric and ferroelectric properties of Ba, Na, Ti doped BiFeO3 solid solutions. Ceram. Int. 48(2), 1805–1813 (2022)

    Article  CAS  Google Scholar 

  27. S. Sharma, C.F. Sanchez Valdes, J.L. Sanchez Llamazares, J.M. Siqueiros, O. Raymond Herrera, Unveiling quantum superparamagnetism by interacting monodomains in multiferroic Er-doped bismuth ferrate nanostructured particles. J. Phys. Chem. 125(11), 6449–6460 (2021)

    CAS  Google Scholar 

  28. Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, Improved structure stability and multiferroic characteristics in CaTiO3-modified BiFeO3 ceramics. J. Am. Ceram. Soc. 95(2), 670–675 (2012)

    Article  CAS  Google Scholar 

  29. J. Liu, X.Q. Liu, X.M. Chen, Ferroelectric and magnetic properties in (1 – x)BiFeO3-x(0.5CaTiO3-0.5SmFeO3) ceramics. J. Am. Ceram. Soc. 100(9), 4045–4057 (2017)

    Article  CAS  Google Scholar 

  30. J. Liu, M.M. Niu, L.J. Wang, C. Peng, D. Xu, Effect of tuning A/B substitutions on multiferroic characteristics of BiFeO3-based ternary system ceramics. J. Magn. Magn. Mater. 510, 166928 (2020)

    Article  CAS  Google Scholar 

  31. P. Mandal, M.J. Pitcher, J. Alaria, H. Niu, P. Borisov et al., Designing switchable polarization and magnetization at room temperature in an oxide. Nature. 525(7569), 363–366 (2015)

    Article  CAS  Google Scholar 

  32. H. Pan, F. Li, Y. Liu, Q.H. Zhang, M. Wang et al., Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365(6453), 578–582 (2019)

    Article  CAS  Google Scholar 

  33. Z. Tang, J. Ge, H. Ni, B. Lu, X.G. Tang et al., High energy-storage density of lead-free BiFeO3 doped Na0.5Bi0.5TiO3-BaTiO3 thin film capacitor with good temperature stability. J. Alloy Compd. 757, 169–176 (2018)

    Article  CAS  Google Scholar 

  34. J.H. Song, C.H. Yang, Q. Yao, Y.X. Zhang, C. Wei et al., The microstructure, ferroelectric and dielectric behaviors of BiFeO3-Na0.5Bi0.5TiO3 based solid solution thin films. Ceram. Int. 43(15), 12287–12292 (2017)

    Article  CAS  Google Scholar 

  35. C. Ang, A.S. Bhalla, L.E. Cross, Dielectric behavior of paraelectric KTaO3, CaTiO3, and (Ln1/2Na1/2)TiO3 under a dc electric field. Phys. Rev. B 64(18), 184104 (2001)

    Article  CAS  Google Scholar 

  36. A. Reyes, C.D.L. Vega, M.E. Fuentes, L. Fuentes, BiFeO3: synchrotron radiation structure refinement and magnetoelectric geometry. J. Eur. Ceram. Soc. 27(13–15), 3709–3711 (2007)

    Article  CAS  Google Scholar 

  37. S. Cheng, B.P. Zhang, L. Zhao, K.K. Wang, Enhanced insulating and piezoelectric properties of BiFeO3-BaTiO3-Bi0.5Na0.5TiO3 ceramics with high Curie temperature. J. Am. Ceram. Soc. 102(12), 7355–7365 (2019)

    Article  CAS  Google Scholar 

  38. C. Zhang, L. Lu, Y. Da, Preparation and positive temperature coefficient of resistivity behavior of BaTiO3–BaBiO3–Bi0.5Na0.5TiO3 ceramics. J. Mater. Sci-Mater El 26(10), 8193–8198 (2015)

    Article  CAS  Google Scholar 

  39. A. Jamil, M.A. Rafiq, Ferroelectric, dielectric properties and electrical conduction mechanism of epitaxial B1-xDyxFeO3 (x = 0.05, 0.075, 0.1, 0.125) thin films prepared by pulsed laser deposition. Ceram. Int. 44(18), 22574–22582 (2018)

    Article  CAS  Google Scholar 

  40. D. Xu, X.N. Yue, Y.D. Zhang, J. Song, X. Chen et al., Enhanced dielectric properties and electrical responses of cobalt-doped CaCu3Ti4O12 thin films. J. Alloy Compd. 773, 853–859 (2018)

    Article  CAS  Google Scholar 

  41. J. Liu, X.Q. Liu, X.M. Chen, Effect of (Sr0.7Ca0.3)TiO3-substitution on structure, dielectric, ferroelectric, and magnetic properties of BiFeO3 ceramics. J. Appl. Phys. 119(20), 759–765 (2016)

    Article  CAS  Google Scholar 

  42. Y. Qin, X.Q. Liu, Y.J. Wu, X.M. Chen, Preparation, dielectric, and magnetic characteristics of LuFe2O4 ceramics. J. Am. Ceram. Soc. 96(8), 2506–2509 (2013)

    Article  CAS  Google Scholar 

  43. S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimnirun, S. Maensiri, Dielectric relaxations and dielectric response in multiferroic BiFeO3 ceramics. Appl. Phys. Lett. 94(6), 62904 (2009)

    Article  CAS  Google Scholar 

  44. J.F. Wei, Y.P. Pu, Y.Q. Mao, J.F. Wang, Effect of the reoxidation on positive temperature coefficient behavior of BaTiO3–Bi0.5Na0.5TiO3. J. Am. Ceram. Soc. 93(6), 1527–1529 (2010)

    CAS  Google Scholar 

  45. H. Zhang, W.F. Liu, P. Wu, X. Hai, M.C. Guo et al., Novel behaviors of multiferroic properties in Na-Doped BiFeO3 nanoparticles. Nanoscale. 6(18), 10831–10838 (2014)

    Article  CAS  Google Scholar 

  46. J. Liu, X.Q. Liu, X.M. Chen, Significantly enhanced ferroelectricity and magnetic properties in (Sr0.5Ca0.5)TiO3-modified BiFeO3 ceramics. J. Appl. Phys. 117(17), 174101 (2015)

    Article  CAS  Google Scholar 

  47. W. Jie, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhil, Nonmagnetic Fe-site doping of BiFeO3 multiferroic ceramics. Appl. Phys. Lett. 96(10), 123 (2010)

    Google Scholar 

Download references

Acknowledgements

The present work was financially supported by the National Natural Science Foundation of China (Grant No. 51802003, 52072004), Natural Science Foundation of Anhui Provincial Education Department (KJ2021A0362), Zhejiang Provincial Natural Science Foundation of China (Grant No. LGG22E020006) and the National Undergraduate Training Programs for Innovation and Entrepreneurship (202210360026).

Author information

Authors and Affiliations

Authors

Contributions

LX: Data curation, Writing—Original draft preparation; JL: Conceptualization, Supervision; JZ: Investigation; XTG: Formal analysis and investigation; LW: Resources; TLS: Writing—Review & Editing; DX: Visualization.

Corresponding author

Correspondence to Juan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, L.L., Liu, J., Zuo, J.N. et al. Effect of co-substitution of Na0.5Bi0.5TiO3 and CaTiO3 on the structure and properties of BiFeO3 ceramics. J Mater Sci: Mater Electron 33, 21838–21851 (2022). https://doi.org/10.1007/s10854-022-08970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08970-8

Navigation