Skip to main content
Log in

Preparation and positive temperature coefficient of resistivity behavior of BaTiO3–BaBiO3–Bi0.5Na0.5TiO3 ceramics

  • Original Research
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, as a promising material for lead-free positive temperature coefficient of resistivity ceramics, (1 − x − y)BaTiO3 − xBaBiO3 − y(Bi0.5Na0.5)TiO3 (x = 0.001, 0.002, 0.003; y = 0, 0.002, 0.004, 0.006, 0.01) samples were prepared by the conventional mixed oxide method. All the samples were sintered in air atmosphere for 1 h. X-ray diffraction, scanning electron microscope and resistivity-temperature measurement were used to study the crystal structure, microstructure and resistivity-temperature dependence. The results revealed that proper amount of BaBiO3 doping not only decreased the room temperature resistivity, but also increased the Curie temperature. Its optimal doping content was finally chosen as 0.2 mol%. And with an increase of BNT content, both the Curie temperature and the room temperature resistivity increased. When BaBiO3 = 0.2 mol%, BNT = 0.6 mol%, the Curie temperature was 153 °C and the room temperature resistivity was 1512 Ω cm. When the BNT content increased to 1 mol%, the Curie temperature increased to 157 °C but the room temperature resistivity increased sharply to 4.0 × 105 Ω cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.Y. Lu, X.Y. Sun, B. Liu, J.L. Zhang, T. Ogata, Structural and dielectric properties, electron paramagnetic resonance, and defect chemistry of Pr-doped BaTiO3 ceramics. J. Alloy. Compd. 615, 25–34 (2014)

    Article  Google Scholar 

  2. T. Takenaka, K. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30, 2236–2239 (1991)

    Article  Google Scholar 

  3. X.X. Wang, X.G. Tang, H.L.W. Chan, Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–BaTiO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 85, 91–93 (2004)

    Article  Google Scholar 

  4. R.Z. Zhang, X.Y. Hu, P. Guo, C.L. Wang, Thermoelectric transport coefficients of n-doped CaTiO3, SrTiO3 and BaTiO3: a theoretical study. Phys. B 407, 1114–1118 (2012)

    Article  Google Scholar 

  5. S.L. Leng, G.R. Li, L.Y. Zheng, T.B. Wang, Q.R. Yin, Synthesis of Y-doped BaTiO3–(Bi1/2K1/2)TiO3 lead-free positive temperature coefficient of resistivity ceramics and their PTC effects. J. Am. Ceram. Soc. 92, 2772–2775 (2009)

    Article  Google Scholar 

  6. M.M. Vijatovic Petrovic, J.D. Bobic, J. Banys, B.D. Stojanovic, Electrical properties of antimony doped barium titanate ceramics. Mater. Res. Bull. 48, 3766–3772 (2013)

    Article  Google Scholar 

  7. K. Park, J.G. Kim, K.J. Lee, W.S. Cho, W.S. Hwang, Electrical properties and microstructure of Y-doped BaTiO3 ceramics prepared by high-energy ball-milling. Ceram. Int. 34, 1573–1577 (2008)

    Article  Google Scholar 

  8. F.D. Morrison, D.C. Sinclair, A.R. West, Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. J. Appl. Phys. 86, 6355–6366 (1999)

    Article  Google Scholar 

  9. Y. Pu, J. Wei, Y. Mao, J. Wang, Positive temperature coefficient of resistivity behavior of niobium-doped (1 − x)BaTiO3 − xBi0.5Li0.5TiO3 ceramics. J. Alloy. Compd. 498, L5–L7 (2010)

    Article  Google Scholar 

  10. Z.C. Li, B. Bergman, Electrical properties and ageing characteristics of BaTiO3 ceramics doped by single dopants. J. Eur. Ceram. Soc. 25, 441–445 (2005)

    Article  Google Scholar 

  11. W. Heywang, Resistivity anomaly in doped barium titanate. J. Am. Ceram. Soc. 47, 484–490 (1964)

    Article  Google Scholar 

  12. G.H. Jonker, Some aspects of semiconducting barium titanate. Solid State Electron. 7, 895–903 (1964)

    Article  Google Scholar 

  13. Y.P. Pu, H.D. Wu, J.F. Wei, N. Xu, Preparation and positive temperature coefficient of resistivity behavior of Ba0.95Ca0.05TiO3–BiYO3–Na0.5Bi0.5TiO3 ceramics. Powder Technol. 219, 244–248 (2012)

    Article  Google Scholar 

  14. Z. He, J. Ma, Y. Qu, C. Wang, Investigation on low room-temperature resistivity Cr/(Ba0.85Pb0.15)TiO3 positive temperature coefficient composites. Mater. Sci. Eng. B Adv. Funct. Solid State Mater. 164, 116–119 (2009)

    Article  Google Scholar 

  15. H.L. Li, D.A. Yang, Y.F. Qu, Fabrication of high Tc BaTiO3–Bi0.5Na0.5TiO3 positive temperature coefficient of resistivity ceramics using the sol–gel method. Mater. Lett. 96, 185–187 (2013)

    Article  Google Scholar 

  16. D.E. Cox, A.W. Sleight, Mixed-valent Ba2Bi3+Bi5+O6: structure and properties vs temperature. Acta Crystallogr. B 35, 1–10 (1979)

    Article  Google Scholar 

  17. M.M. Savosta, J. Englich, J. Kohout, V.D. Doroshev, V.A. Borodin, Yu.G. Pashkevich, A.G. Soldatov, S.N. Barilo, S.V. Shiryaev, The valence state of bismuth in BaBiO3 probed by NQR. Phys. C 341–348, 943–944 (2000)

    Article  Google Scholar 

  18. Y. Luo, X.Y. Liu, X.Q. Li, G.Z. Liu, PTCR effect in BaBiO3-doped BaTiO3 ceramics. Solid State Ionics 177, 1543–1546 (2006)

    Article  Google Scholar 

  19. H.L. Li, J.N. Kang, F. Guo, Y.F. Qu, D.A. Yang, Effect of the Nb2O5 content on electrical properties of lead-free BaTiO3–Bi0.5Na0.5TiO3 ceramics. Ceram. Int. 39, 7589–7593 (2013)

    Article  Google Scholar 

  20. M.L. Liu, D.A. Yang, Y.F. Qu, Effect of sintering procedure on the resistivity of (1 − x)BaTiO3 − x(Bi0.5Na0.5)TiO3 ceramics. J. Alloy. Compd. 508, 559–564 (2010)

    Article  Google Scholar 

  21. W.R. Huo, Y.F. Qu, Effects of Bi1/2Na1/2TiO3 on the Curie temperature and the PTC effects of BaTiO3-based positive temperature coefficient ceramics. Sens. Actuators, A 128, 265–269 (2006)

    Article  Google Scholar 

  22. J.F. Wei, Y.P. Pu, Y.Q. Mao, Effects of BNT addition on the microstructure and PTC properties of La-doped BaTiO3-based PTCR ceramics. Ferroelectrics 403, 91–96 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De’an Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Lu, L. & Yang, D. Preparation and positive temperature coefficient of resistivity behavior of BaTiO3–BaBiO3–Bi0.5Na0.5TiO3 ceramics. J Mater Sci: Mater Electron 26, 8193–8198 (2015). https://doi.org/10.1007/s10854-015-3480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3480-7

Keywords

Navigation