Skip to main content

Advertisement

Log in

Enhanced energy storage performance of (Ba0.85Ca0.15) (Zr0.10Ti0.90) O3-based ceramics through a synergistic optimization strategy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 (BCZT) ceramics exhibit excellent electrical properties due to the existence of morphotropic phase boundary (MPB), and have received extensive attention and research. However, its energy storage density is relatively unsatisfactory. In this work, we propose a synergistic optimization strategy to improve the energy storage performance of BCZT, namely, the introduction of Sr0.7La0.2TiO3 (SLT) and the sintering aid of lithium carbonate. The former can hinder the long-range ferroelectric order, induce polar nanodomains, and improve energy storage efficiency. The latter can reduce the sintering temperature and promote the densification of grains, which is beneficial to improve the energy storage density. The results show that the addition of SLT widens the dielectric peak, and the Curie temperature moves to a lower direction. The ceramics have good frequency stability. Under the electric field of 200 kV/cm, it shows the highest energy storage density (1.031 J/cm3) and the energy storage efficiency is 59.8%. After the introduction of lithium carbonate into the 0.8BCZT-0.2SLT ceramics, the sintering temperature is reduced by about 80 °C. Scanning electron microscopy results show that all samples have dense microstructures. In 0.8BCZT-0.2SLT-2wt% Li2CO3 ceramics, the obtained maximum recoverable energy storage density is 1.436 J/cm3, and the efficiency is 56.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code availability

Not applicable.

References

  1. Z. Liu, X.F. Chen, W. Peng, C.H. Xu, X.L. Dong, F. Cao, G.S. Wang, Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 106, 262901 (2015)

    Article  CAS  Google Scholar 

  2. Z.B. Shen, X.H. Wang, B.C. Luo, L.T. Li, BaTiO3-BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3, 18146–18153 (2015)

    Article  CAS  Google Scholar 

  3. I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Overview of current and future energy storage technologies for electric power applications. Renew. Sust Energ. Rev. 13, 1513–1522 (2009)

    Article  Google Scholar 

  4. J.B. Lim, S.J. Zhang, N. Kim, T.R. Shrout, High-Temperature Dielectrics in the BiScO3-BaTiO3-(K1/2Bi1/2)TiO3 Ternary System. J. Am. Ceram. Soc. 92, 679–682 (2009)

    Article  CAS  Google Scholar 

  5. B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science. 313, 334–336 (2006)

    Article  CAS  Google Scholar 

  6. H.R. Ye, F. Yang, Z.B. Pan, D. Hu, X.J. Lv, H.X. Chen, F.F. Wang, J.S. Wang, P. Li, J.W. Chen, J.J. Liu, J.W. Zhai, Significantly Improvement of Comprehensive Energy Storage Performances with Lead-free Relaxor Ferroelectric Ceramics for High-temperature Capacitors Applications. Acta Mater. 203, 116484 (2021)

    Article  CAS  Google Scholar 

  7. J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, Effect of poling process on piezoelectric properties of sol-gel derived BZT-BCT ceramics. J. Eur. Ceram. Soc. 35, 1785–1798 (2015)

    Article  CAS  Google Scholar 

  8. Y. Tian, X.L. Chao, L.L. Wei, P.F. Liang, Z.P. Yang, Phase transition behavior and electrical properties of lead-free (Ba1-xCax)(Zr0.1Ti0.9)O3 piezoelectric ceramics. J. Appl. Phys. 113, 1491 (2013)

    Google Scholar 

  9. D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, F. Zhang, Dielectric responses of glass-added Ba0.95Ca0.05Zr0.3Ti0.7O3 ceramics for energy storage capacitors. Phys. B Condens. Matter 440, 67–72 (2014)

    Article  CAS  Google Scholar 

  10. Y.P. Pu, M.T. Yao, H.R. Liu, T. Fromling, Phase transition behavior, dielectric and ferroelectric properties of (1-x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. J. Eur. Ceram. Soc. 36, 2461–2468 (2016)

    Article  CAS  Google Scholar 

  11. I. Coondoo, N. Panwar, D. Alikin, I. Bdikin, S.S. Islam, A. Turygin, V.Y. Shur, A.L. Kholkin, A comparative study of structural and electrical properties in lead-free BCZT ceramics: Influence of the synthesis method. Acta Mater. 155, 331–342 (2018)

    Article  CAS  Google Scholar 

  12. K.L. Xu, P. Yang, W. Peng, L.X. Li, Temperature-stable MgO-doped BCZT lead-free ceramics with ultrahigh energy storage efficiency. J. Alloys Compd. 829, 154516 (2020)

    Article  CAS  Google Scholar 

  13. M. Gao, W. Ge, X. Li, H. Yuan, C. Liu, H. Zhao, Y. Ma, Y. Chang, Enhanced Dielectric and Energy Storage Properties in Fe-Doped BCZT Ferroelectric Ceramics. Phys. Status solidi (A) 217, 2000253 (2020)

    Article  CAS  Google Scholar 

  14. S. He, B. Peng, G.J.T. Leighton, C. Shaw, N. Wang, W. Sun, L. Liu, Q. Zhang, High-performance La-doped BCZT thin film capacitors on LaNiO3/Pt composite bottom electrodes with ultra-high efficiency and high thermal stability. Ceram. Int. 45, 11749–11755 (2019)

    Article  CAS  Google Scholar 

  15. M. Zhou, R. Liang, Z. Zhou, C. Xu, X. Nie, X. Chen, X. Dong, High energy storage properties of (Ni1/3Nb2/3)4+ complex-ion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics. Mater. Res. Bull. 98, 166–172 (2018)

    Article  CAS  Google Scholar 

  16. S.P.P. Sadhu, S. Siddabattuni, S. Muthukumar, V.K.B.R. Varma, Enhanced dielectric properties and energy storage density of surface engineered BCZT/PVDF-HFP nanodielectrics. J. Mater. Sci. Mater. Electron. 29, 6174–6182 (2018)

    Article  CAS  Google Scholar 

  17. C. Shi, F. Yan, G. Ge, Y. Wei, J. Zhai, W. Yao, Significantly enhanced energy storage performances and power density in (1 – x)BCZT-xSBT lead-free ceramics via synergistic optimization strategy. Chem. Eng. J. 426, 130800 (2021)

    Article  CAS  Google Scholar 

  18. H.Y. He, X. Lu, M.C. Li, Y.M. Wang, Z.R. Li, Z.G. Lu, L. Lu, Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3-SrTiO3 ceramics. J. Mater. Chem. C 8, 2411–2418 (2020)

    Article  CAS  Google Scholar 

  19. S.R. Sangawar, B. Praveenkumar, Structural and electrical properties of low temperature sintered PZT ceramics. Ferroelectrics. 517, 66–74 (2017)

    Article  CAS  Google Scholar 

  20. M.-R. Joung, J.-S. Kim, M.-E. Song, S. Nahm, J.-H. Paik, Low-Temperature Sintering and Microwave Dielectric Properties of the Li2CO3-Added Ba2V2O7Ceramics. J. Am. Ceram. Soc. 93, 934–936 (2010)

    Article  CAS  Google Scholar 

  21. X.W. Wang, B.H. Zhang, Y.C. Shi, Y.Y. Li, M. Manikandan, S.Y. Shang, J. Shang, Y.C. Hu, S.Q. Yin, Enhanced energy storage properties in Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with glass additives. J. Appl. Phys. 127, 074103 (2020)

    Article  CAS  Google Scholar 

  22. H.B. Yang, F. Yan, G. Zhang, Y. Lin, F. Wang, Dielectric behavior and impedance spectroscopy of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with B2O3-Al2O3-SiO2 glass-ceramics addition for enhanced energy storage. J. Alloys Compd. 720, 116–125 (2017)

    Article  CAS  Google Scholar 

  23. B. Chen, M.S. Niu, Z.H. Peng, X.S. Qiao, P.F. Liang, Z.P. Yang, X.L. Chao, Dielectric properties of lead-free BNT-based ferroelectric ceramics near the morphotropic phase boundary. Mater. Chem. Phys. 256, 123639 (2020)

    Article  CAS  Google Scholar 

  24. Q.Y. Hu, Y. Tian, Q.S. Zhu, J.H. Bian, L. Jin, H.L. Du, D.O. Alikin, V.Y. Shur, Y.J. Feng, Z. Xu, X.Y. Wei, Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy 67, 264–266 (2020)

    Article  CAS  Google Scholar 

  25. Q.B. Yuan, G. Li, F.Z. Yao, S.D. Cheng, Y.F. Wang, R. Ma, S.B. Mi, M. Gu, K. Wang, J.F. Li, H. Wang, Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 52, 203–210 (2018)

    Article  CAS  Google Scholar 

  26. X.L. Chen, X.X. Li, X. Yan, G.F. Liu, H.F. Zhou, (Ba1-xBix)(Ti1-xNi0.5xSn0.5x)O3 Solid Solution: Phase Evolution, Microstructure, Dielectric Properties, and Impedance Analysis. J. Electron. Mater. 47, 2576–2583 (2018)

    Article  CAS  Google Scholar 

  27. T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Let 15, 1767–1769 (1996)

    Article  CAS  Google Scholar 

  28. Z. Chen, J. Zhang, S. Xu, J. Xue, T. Jiang, Y. Hao, Influence of stacking faults on the quality of GaN films grown on sapphire substrate using a sputtered AIN nucleation layer. Mater. Res. Bull. 89, 193–196 (2017)

    Article  CAS  Google Scholar 

  29. J. Khemprasit, B. Khumpaitool, Influence of Cr doping on structure and dielectric properties of LixCryNi1-x-yO ceramics. Ceram. Int. 41, 663–669 (2015)

    Article  CAS  Google Scholar 

  30. X.W. Wang, B.H. Zhang, L.H. Xu, X.E. Wang, Y.C. Hu, G.H. Shen, L.Y. Sun, Dielectric properties of Y and Nb co-doped TiO2 ceramics. Sci. Rep. 7, 8517 (2017)

    Article  CAS  Google Scholar 

  31. X.W. Wang, B.H. Zhang, G.H. Shen, L.Y. Sun, Y.C. Hu, L.X. Shi, X.E. Wang, C. Jie, L.J. Zhang, Colossal permittivity and impedance analysis of tantalum and samarium co-doped TiO2 ceramics. Ceram. Int. 43, 13349–13355 (2017)

    Article  CAS  Google Scholar 

  32. F. Si, B. Tang, Z.X. Fang, H. Li, S.R. Zhang, Enhanced energy storage and fast charge-discharge properties of (1-x) BaTiO3-xBi(Ni1/2Sn1/2)O3 relaxor ferroelectric ceramics. Ceram. Int. 45, 17580–17590 (2019)

    Article  CAS  Google Scholar 

  33. Z.H. Dai, J.L. Xie, Z.B. Chen, S. Zhou, J.J. Liu, W.G. Liu, Z.Z. Xi, X.B. Ren, Improved energy storage density and efficiency of (1-x) Ba0.85Ca0.15Zr0.1Ti0.9O3-xBiMg2/3Nb1/3O3 lead-free ceramics. Chem. Eng. J. 410, 128341 (2021)

    Article  CAS  Google Scholar 

  34. H.B. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Y.L. Wang, L.N. Guo, W.D. Tai, H. Wei, Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc. 37, 3303–3311 (2017)

    Article  CAS  Google Scholar 

  35. L.J. Liu, S.K. Ren, J. Zhang, B.L. Peng, L. Fang, D. Wang, Revisiting the temperature-dependent dielectric permittivity of Ba(Ti1-xZrx)O3. J. Am. Ceram. Soc. 101, 2408–2416 (2018)

    Article  CAS  Google Scholar 

  36. X.S. Qiao, F.D. Zhang, D. Wu, B. Chen, X.M. Zhao, Z.H. Peng, X.D. Ren, P.F. Liang, X.L. Chao, Z.P. Yang, Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J. 388, 124158 (2020)

    Article  CAS  Google Scholar 

  37. X.F. Zhou, H. Qi, Z.N. Yan, G.L. Xue, H. Luo, D. Zhang, Superior Thermal Stability of High Energy Density and Power Density in Domain-Engineered Bi0.5Na0.5TiO3-NaTaO3 Relaxor Ferroelectrics. ACS Appl. Mater. Interfaces 11, 43107–43115 (2019)

    Article  CAS  Google Scholar 

  38. W. Weibull, A Statistical Distribution Function of Wide Applicability. Jour. App. Mech 18, 293–297 (1951)

    Article  Google Scholar 

  39. X.R. Wang, Y. Zhang, X.Z. Song, Z.B. Yuan, T. Ma, Q. Zhang, C.S. Deng, T.X. Liang, Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc. 32, 559–567 (2012)

    Article  CAS  Google Scholar 

  40. S.X. Xue, S.H. Liu, W.Q. Zhang, J.W. Wang, L.J. Tang, B. Shen, J.W. Zhai, Dielectric properties and charge-discharge behaviors in niobate glass ceramics for energy-storage applications. J. Alloys Compd. 617, 418–422 (2014)

    Article  CAS  Google Scholar 

  41. M. Wei, J.H. Zhang, J.P. Huang, H.W. Chen, C.R. Yang, Microstructure and electrical properties of TiO2-CaO-MgO-Al2O3-SiO2 glass-ceramic with sol-gel method. J. Mater. Sci. Mater. Electron. 27, 11623–11627 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (Grant No.51302061), Natural Science Foundation of Hebei province (Grant No. E2014201076 and E2020201021), and Research Innovation Team of College of Chemistry and Environmental Science of Hebei University (Grant No. hxkytd2102).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study conception and design. Material preparation was performed by Qi Shi, Ke An, Tingting Fan, Feng Huang, Lei Liu and data collection and analysis were performed by Qi Shi, Zhengming Yu. The first draft of the manuscript was written by Qi Shi, and all authors commented on previous versions of the manuscript. Final manuscript read and approved by all authors.

Corresponding author

Correspondence to Jing Wang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Enhanced energy storage performance of (Ba0.85Ca0.15) (Zr0.10Ti0.90)-based ceramics through a synergistic optimization strategy”.

Ethical approval

Hereby, we declare that the manuscript is our original work and not have been published or under editorial considerations anywhere else. The stated authors of the work have read the content and approved for submission of this manuscript to Journal of Materials Science: Materials in Electronics. There is no personal or financial conflict of interest. Further if our article has been accepted, we ensure that we will not publish it anywhere else in any form, in any language without getting consent of the publisher.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., An, K., Yu, Z. et al. Enhanced energy storage performance of (Ba0.85Ca0.15) (Zr0.10Ti0.90) O3-based ceramics through a synergistic optimization strategy. J Mater Sci: Mater Electron 33, 21796–21810 (2022). https://doi.org/10.1007/s10854-022-08967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08967-3

Navigation