Skip to main content

Advertisement

Log in

Microstructure and electrical properties of TiO2–CaO–MgO–Al2O3–SiO2 glass-ceramic with sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the composites of the TiO2–CaO–MgO–Al2O3–SiO2 glass-ceramic were successfully produced by the method of Sol–Gel from tetrabutyl titanate as the titanium (Ti) source, which were sintering at 1300 °C for 2 h. The dielectric properties of the composites were studied. The highest energy density reached 1.05 J/cm3 with low loss (<0.01), ε = 109 and the breakdown voltage of 48.29 kV/mm, which was 1.38 times higher than that of pure TiO2(0.76 J/cm3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Optical response of high-dielectric-constant perovskite-related oxide. Science 293, 673–676 (2001)

    Article  Google Scholar 

  2. S. Krohns et al., The route to resource-efficient novel materials. Nat. Mater. 10, 899–901 (2011)

    Article  Google Scholar 

  3. Z.H. Wu, H.X. Liu, M.H. Cao, Z.Y. Shen, Z.H. Yao, H. Hao, D.B. Luo, Effect of BaO–Al2O3–B2O3–SiO2 glass additive on densification and dielectric properties of Ba0.3Sr0.7TiO3 ceramics. J. Ceram. Soc. Jpn. 116(2), 345–349 (2008)

    Article  Google Scholar 

  4. T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett. 15(20), 1767–1769 (1996)

    Article  Google Scholar 

  5. A. Young, G. Hilmas, S.C. Zhang, R.W. Schwartz, Effect of liquid-phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc. 90(5), 1504–1510 (2007)

    Article  Google Scholar 

  6. J. Liebault, J. Vallayer, D. Goeuriot, D. Treheux, F. Thevenot, How the trapping of charges can explain the dielectric breakdown performance of alumina ceramics. J. Eur. Ceram. Soc. 21(3), 389–397 (2001)

    Article  Google Scholar 

  7. M. Touzin, D. Goeuriot, C. Guerret-Piécourt, D. Juvé, H.J. Fitting, Alumina based ceramics for high-voltage insulation. J. Eur. Ceram. Soc. 30(4), 805–817 (2010)

    Article  Google Scholar 

  8. J.J. Huang, Y. Zhang, T. Ma, H.T. Li, L.W. Zhang, Correlation between dielectric breakdown strength and interface polarization in barium strontium titanate glass ceramics. Appl. Phys. Lett. 96(4), 042902 (2010)

    Article  Google Scholar 

  9. A. Schneuwly, P. Groning, L. Schlapbach, IEEE Trans. Dielectr. Electr. Insul. 5, 862–868 (1998)

    Article  Google Scholar 

  10. X. Zhou, B. Chu, B. Neese, M. Lin, Q.M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 14, 1133 (2007)

    Article  Google Scholar 

  11. C.A Randall, H Ogihara, J.R Kim, G.Y Yang, C.S Stringer, S. Trolier-McKinstry. High temperature and high energy density dielectric materials. IEEE (2009)

  12. N.J. Smith, B. Rangarajan, M.T. Lanagan, C.G. Pantano, Alkali-free glass as a high energy density dielectric material. Mater. Lett. 63(15), 1245–1248 (2009)

    Article  Google Scholar 

  13. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, High-energy density capacitors utilizing 0.7 BaTiO3–0.3 BiScO3 ceramics. J. Am. Ceram. Soc. 92(8), 1719–1724 (2009)

    Article  Google Scholar 

  14. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J. Am. Ceram. Soc. 92(1), 110–118 (2009)

    Article  Google Scholar 

  15. S.S.N. Bharadwaja, J.R. Kim, H. Ogihara, L.E. Cross, S. Trolier-McKinstry, C.A. Randall, Critical slowing down mechanism and reentrant dipole glass phenomena in (1 − x)BaTiO3–xBiScO3(0.1 ≪ x ≪ 0.4): the high energy density dielectrics. Phys. Rev. B 83(2), 24106 (2011)

    Article  Google Scholar 

  16. R. Singh, S. Alamgir, R. Sharangpani, Deposition of high dielectric constant materials by dual spectral sources assisted metalorganic chemical vapor deposition. Appl. Phys. Lett. 67(26), 3939 (1995)

    Article  Google Scholar 

  17. X. Hao, Z. Yue, J. Xu, S. An, C.-W. Nan, Energy-storage performance and electrocaloric effect in (100)-oriented Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thick films. J. Appl. Phys. 110(6), 064109 (2011)

    Article  Google Scholar 

  18. X. Hao, Y. Wang, J. Yang, S. An, J. Xu, High energy-storage performance in Pb0.91La0.09(Ti0.65Zr0.35)O3 relaxor ferroelectric thin films. J. Appl. Phys. 112(11), 114111 (2012)

    Article  Google Scholar 

  19. S. Tong, B. Ma, M. Narayanan, S. Liu, R. Koritala, U. Balachandran, D. Shi, Lead lanthanum zirconate titanate ceramic thin films for energy storage. ACS Appl. Mater. Interfaces 5(4), 1474–1480 (2013)

    Article  Google Scholar 

  20. Z. Hu, B. Ma, R.E. Koritala, U. Balachandran, Temperature-dependent energy storage properties of antiferroelectric Pb0.96La0.04Zr0.98Ti0.02O3 thin films. Appl. Phys. Lett. 104(26), 263902 (2014)

    Article  Google Scholar 

  21. S. Chao, F. Dogan, Effects of manganese doping on the dielectric properties of titanium dioxide ceramics. J. Am. Ceram. Soc. 94(1), 40–50 (2011)

    Article  Google Scholar 

  22. Y. Zhao, X. Hao, Q. Zhang, Energy-storage properties and electrocaloric effect of Pb(1−3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces 6(14), 11633–11639 (2014)

    Article  Google Scholar 

  23. R. Macklin. Electrostatic energy storage. NASA STI/Recon Technical Report N, 77, 24598 (1976)

  24. Weir et al. Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries. U.S. 7033406. 25 April 2006

  25. W. Huebner, S.C. Zhan, B. Gilmore, M.L. Krogh, B.C. Schultz, R.C. Pate, L.F. Rinehart, J.M. Lundstrom, High breakdown strength, multilayer ceramics for compact pulsed power applications. 12th IEEE International, vol. 2. doi:10.1109/PPC.1999.823749

  26. T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett. 15(20), 1767–1769 (1996)

    Article  Google Scholar 

  27. E.K. Beauchamp, Effect of microstructure on pulse strength of MgO. J. Am. Ceram. Soc. 54(10), 484–487 (1971)

    Article  Google Scholar 

  28. G. Mazzanti, G.C. Montanari, F. Peruzzotti, A. Zaopo, Some remarks regarding the test cells used for electric strength measurement. Conference Record of the 1996 IEEE international symposium on electrical insulation, Montreal, vol. 2, pp. 474–477 (1996)

Download references

Acknowledgments

This work is supported by the State Key Program of National Natural Science of China (Grant No. 50932002 and 51172035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Zhang, J., Huang, J. et al. Microstructure and electrical properties of TiO2–CaO–MgO–Al2O3–SiO2 glass-ceramic with sol–gel method. J Mater Sci: Mater Electron 27, 11623–11627 (2016). https://doi.org/10.1007/s10854-016-5294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5294-7

Keywords

Navigation