Skip to main content
Log in

Structural, magnetic and magnetocaloric properties of Ru doped Pr0.67Ca0.33Mn1 − xRuxO3 manganites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have investigated the influence of ruthenium doping on magnetic and magnetocaloric properties of Pr0.67Ca0.33Mn1 − x RuxO3 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5) compounds. X-ray results revealed that the samples have an orthorhombic structure with Pnma space group. The magnetization analysis also showed that Ru doping destroys CO antiferromagnetic and simultaneously inducing ferromagnetism. Variation of lattice parameters and magnetization measurements revealed the existence of mixed valence states of Ru3+ and Ru4+. With increasing Ru content, a slight increase in Curie temperature and magnetization values was observed until x = 0.15. At further Ru doping rates, a considerable decrease was observed in Curie temperature and saturation magnetization. Such a behavior at high Ru concentration rates in saturation magnetization and Curie temperature was attributed to a smaller magnetic moment of Ru4+ than that of Mn3+ and Mn4+ and increase of AFM interaction between the Ru3+– Mn3+ and Ru3+– Mn4+ pairs. The decrease in |ΔSm| was attributed to the second-order magnetic phase transition and the reduction in saturation magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data

The data that support the findings of this study are available from the corresponding author on request.

References

  1. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005)

    Article  CAS  Google Scholar 

  2. V.K. Pecharsky, K.A. Gschneidner, Giant magnetocaloric effect in Gd-5(Si2Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997)

    Article  CAS  Google Scholar 

  3. H. Wada, Y. Tanabe, Giant magnetocaloric effect of MnAs1–xSbx. Appl. Phys. Lett. 79, 3302–3304 (2001)

    Article  CAS  Google Scholar 

  4. O. Tegus, E. Bruck, K.H. Buschow, F.R. de Boer, Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002)

    Article  CAS  Google Scholar 

  5. F.W. Wang, X.X. Zhang, F.X. Hu, Large magnetic entropy change in TbAl2 and (Tb0.4Gd0.6)Al-2. Appl. Phys. Lett. 77, 1360–1362 (2000)

    Article  CAS  Google Scholar 

  6. V. Franco, J.M. Borrego, A. Conde, Influence of Co addition on the magnetocaloric effect of FeCoSiAlGaPCB amorphous alloys. App. Phys. Lett. 88, 132509 (2006)

    Article  CAS  Google Scholar 

  7. H. Gencer, V.S. Kolat, T. Izgi, S. Atalay, Magnetocaloric Effect in Perovskite Manganites (Materials Research Forum LLC, 2020), pp.18–37

    Google Scholar 

  8. A.M. Gomes, F. Garcia, A.P. Guimaraes, M.S. Reis, V.S. Amaral, P.B. Tavares, Magnetocaloric effect of the (Pr, Ca)MnO3 manganite at low temperatures. J. Magn. Magn. Mater. 290–291, 694–696 (2005)

    Article  CAS  Google Scholar 

  9. M. Pektas, H. Gencer, T. Izgi, V.S. Kolat, S. Atalay, Field induced unusual magnetic behavior at low temperature in Pr0.67Ca0.33MnO3. Acta Phys. Polonica A 125, 217–219 (2014)

    Article  Google Scholar 

  10. S. Hebert, V. Hardy, A. Maignan, R. Mahendiran, M. Hervieu, C. Martin, B. Raveau, Magnetic-field-induced step-like transitions in Mn-site doped manganites. J. Solid State Chem. 165, 6–11 (2002)

    Article  CAS  Google Scholar 

  11. F. Rivadulla, M.A.L. Quintela, L.E. Hueso, C. Jardon, A. Fondado, J. Rivas, M.T. Causa, R.D. Sanchez, Strong ferro-antiferromagnetic competition and charge ordering in Pr0.67Ca0.33MnO3. Solid State Commun. 110, 179–183 (1999)

    Article  CAS  Google Scholar 

  12. R. Mahendiran, A. Maignan, S. Hebert, C. Martin, M. Hervieu, B. Raveau, J.F. Mitchell, P. Schiffer, Ultrasharp magnetization steps in perovskite manganites. Phys. Rev. Lett. 89, 286602 (2002)

    Article  CAS  Google Scholar 

  13. S. Majumdar, T. Elovaara, H. Huhtinen, S. Granroth, P. Paturi, Crystal asymmetry and low-angle grain boundary governed persistent photoinduced magnetization in small bandwidth manganites. J. Appl. Phys. 113, 063906 (2013)

    Article  CAS  Google Scholar 

  14. B. Raveau, A. Maignan, C. Martin, Insulator-metal transition induced by Cr and Co doping in Pr0.5Ca0.5MnO3. J. Solid State Chem. 130, 162–166 (1997)

    Article  CAS  Google Scholar 

  15. S. Hebert, A. Maignan, V. Hardy, C. Martin, M. Hervieu, B. Raveau, Avalanche like field dependent magnetization of Mn-site doped charge-ordered manganites. Solid State Commun. 122, 335–340 (2002)

    Article  CAS  Google Scholar 

  16. A. Maignan, F. Damay, C. Martin, B. Raveau, Nickel-induced metal-insulator transition in the small a cation manganites Ln (0.5) Ca (0.5) MnO (3). Mater. Res. Bull. 32, 965–972 (1997)

    Article  CAS  Google Scholar 

  17. A. Maignan, C. Martin, M. Hervieu, B. Raveau, Ru doping of the A-type antiferromagnetic Pr0.5Sr0.5MnO3: conversion to a metallic ferromagnetic. J. Appl. Phys. 89, 500–5003 (2001)

    Article  CAS  Google Scholar 

  18. C.A. Lambert, M. Gervais, M. Zaghrioui, S. Roger, F. Gervais, N. Raimboux, P. Simon, Temperature dependence of phase separation and magnetic anisotropy by electron spin resonance in Pr0.6Ca0.4Mn0.9Ru0.1O3. Eur. Phys. J. B 47, 207–211 (2005)

    Article  CAS  Google Scholar 

  19. B. Raveau, A. Maignan, C. Martin, M. Hervieu, Ru doping of perovskite manganites: an effective route to ferromagnetism, metallicity. CMR J. Superconductivity 14, 217–229 (2001)

    Article  CAS  Google Scholar 

  20. V.S. Kumar, R. Mahendiran, B. Raveau, Effect of Ru-doping on magnetocaloric effect in Pr based charge ordered manganites. IEEE Trans. Magnetics 46, 1652–1655 (2010)

    Article  CAS  Google Scholar 

  21. Y.L. Wang, M.F. Liu, Y.L. Xie, Z.B. Yan, S. Dong, J.M. Liu, Manipulating the ferromagnetism in narrow-bandwidth Pr1xCaxMnO3 (0<=x<=0.6) by means of the Mn-Ru t(2g) ferromagnetic super-exchanges. J. App. Phys. 118, 123901(1–10) (2015)

    Google Scholar 

  22. J.T. Ji, Y. Li, T.S. Zhao, Y.W. Du, The effect of Ru doping on the alkali-doped manganite Pr0.8Na0.2MnO3. J. Mag. Mag. Mater. 322, 3857–3861 (2010)

    Article  CAS  Google Scholar 

  23. C. Krishnamoorthi, S.K. Barik, R. Mahendiran, Effect of Ru-substitution on electrical and magnetocaloric properties of Nd0.5Ca0.5MnO3. Solid State Commun. 151, 107–111 (2011)

    Article  CAS  Google Scholar 

  24. A.M. Gomes, F. Garcia, A.P. Guimarães, M.S. Reis, V.S. Amaral, Field-tuned magnetocaloric effect in metamagnetic manganite system. Appl. Phys. Lett. 85, 4974–4976 (2004)

    Article  CAS  Google Scholar 

  25. R.D. Shannon, C.T. Prewitt, Acta Cryst. Sec. A. 32, 751 (1976)

    Article  Google Scholar 

  26. K.M. Krishnan, H.L. Ju, Role of stoichiometry and structure in colossal magnetoresistive La1–xSrxMn1–yRuyO3+δ. Phys. Rev. B 60, 14793–14803 (1999)

    Article  CAS  Google Scholar 

  27. R.K. Sahu, S.S. Manoharan, A Zener pair effect in lanthanum rutheno manganite. J. Appl. Phys. 91, 7517 (2002)

    Article  CAS  Google Scholar 

  28. L. Malavasi, M.C. Mozzati, E.D. Tullio, C. Tealdi, G. Flor, Redox behavior of Ru-doped La1xNaxMnO3+δ manganites. Phys. Rev. B 71, 174435 (2005)

    Article  CAS  Google Scholar 

  29. L.S. Lakshmi, V. Sridharana, D.V. Natarajana, S. Chandra, V.S. Sastrya, T.S. Radhakrishnana, P. Pandianb, R.J. Joseyphusb, A. Narayanasam, Possible magnetic phase separation in Ru-doped La0.67Ca0.33MnO3. J. Mag. Mag. Mater. 257, 195–205 (2003)

    Article  Google Scholar 

  30. L.S. Lakshmi, V. Sridharan, A.A. Sukumar, M. Kamruddin, V.S. Sastry, V.S. Raju, Double MITs and magnetoresistance: an intrinsic feature of Ru substituted La0.67Ca0.33MnO3. J. Phys.: Condens. Matter 18, 4427–4442 (2006)

    CAS  Google Scholar 

  31. M.F. Liu, Z.Z. Du, Y.L. Xie, X. Li, Z.B. Yan, J.M. Liu, Unusual ferromagnetism enhancement in ferromagnetically optimal manganite La0.7–yCa0.3+yMn1–yRuyO3 (0<=y<0.3): the role of Mn-Ru t(2g) super-exchange. Sci. Rep. 4, 9922 (2015)

    Article  CAS  Google Scholar 

  32. S.K. Srivastava, B. Samantaray, T. Bora, S. Ravi, Magnetic and electrical properties of Mn-substituted (La0.85Ag0.15) CoO3 compounds. J. Magn. Magn. Mat. 474, 605–612 (2019)

    Article  CAS  Google Scholar 

  33. M.E. Hagary, Y.A. Shoker, S. Mohammad, A.M. Moustafa, A. Abd El-Aal, H. Michor, M. Reissner, G. Hilscher, A.A. Ramadan, Structural and magnetic properties of polycrystalline La0.77Sr0.23Mn1−xCuxO3 (0≤ x≤ 0.5) manganites. J. Alloys Compd. 468, 47–53 (2009)

    Article  CAS  Google Scholar 

  34. B.K. Banerjee, Phys. Lett. 12, 16–17 (1964)

    Article  Google Scholar 

  35. S. Das, T.K. Dey, Magnetocaloric effect in potassium doped lanthanum manganite perovskites prepared by a pyrophoric method. J. Phys.: Condens. Matter 18, 7629–7641 (2006)

    CAS  Google Scholar 

  36. R. Cherif, E.K. Hlil, M. Ellouze, F. Elhalouani, S. Obbade, Study of magnetic and magnetocaloric properties of La0.6Pr0.1Ba0.3MnO3 and La0.6Pr0.1Ba0.3Mn0.9Fe0.1O3 perovskite-type manganese oxides. J. Mater. Sci. 49, 8244–8251 (2014)

    Article  CAS  Google Scholar 

  37. O. Karaagac, H. Köckar, The effects of temperature and reaction time on the formation of manganese ferrite nanoparticles synthesized by hydrothermal method. J. Mater. Sci.: Mater. Electron. 31, 2567–2574 (2020)

    CAS  Google Scholar 

  38. O. Karaagac, B. Bilir, H. Kockar, Superparamagnetic cobalt ferrite nanoparticles, effect of temperature and base concentration. J. Supercond. Nov. Magn. 28, 1021–1027 (2015)

    Article  CAS  Google Scholar 

  39. O. Karaagac, S. Atmaca, H. Kockar, A facile method to synthesize nickel ferrite nanoparticles: parameter effect. J. Supercond. Nov. Magn. 30, 2359–2369 (2017)

    Article  CAS  Google Scholar 

  40. C. Hasirci, O. Karaagac, H. Köckar, Superparamagnetic zinc ferrite: a correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process. J. Magn. Magn. Mater. 474, 282–286 (2019)

    Article  CAS  Google Scholar 

  41. F. Ozel, H. Kockar, S. Beyaz, O. Karaagac, T. Tanrisever, Superparamagnetic iron oxide nanoparticles: effect of iron oleate precursors obtained with a simple way. J. Mater. Sci.: Mater. Electron. 24, 3073–3080 (2013)

    CAS  Google Scholar 

  42. V. Franco, J.S. Blazquez, B. Ingale, A. Conde, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu. Rev. Mater. Res. 42, 305–342 (2012)

    Article  CAS  Google Scholar 

  43. M. Pektas, T. Izgi, H. Gencer, S. Atalay, V.S. Kolat, N. Bayri, Effects of Ru substitution on the structural, magnetic and magnetocaloric properties of Pr0.68Ca0.22Sr0.1Mn1xRuxO3(x=0, 0.05, 0.1 and 0.2) compounds. J. Mater. Sci.: Mater. Electron. 31, 15731–15741 (2020)

    CAS  Google Scholar 

  44. J.Y. Law, V. Franco, L.M.M. Ramírez, A. Conde, D.Y. Karpenkov, I. Radulov, K.P. Skokov, O. Gutfleisch, A quantitative criterion for determining the order of magnetic phase transitions using the magnetocaloric effect. Nat. Commun. 9, 2680 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Inonu University with project number FBA-2021-2778.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to T. İzgi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animal or human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanıkırmızı, T., İzgi, T., Bayri, N. et al. Structural, magnetic and magnetocaloric properties of Ru doped Pr0.67Ca0.33Mn1 − xRuxO3 manganites. J Mater Sci: Mater Electron 33, 21778–21795 (2022). https://doi.org/10.1007/s10854-022-08966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08966-4

Navigation