Skip to main content

Advertisement

Log in

Studies on optical properties, thermal stability and electrical conductivity of copper alumina nanoparticles-reinforced Poly(pyrrole-co-indole) for optoelectronic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work focused on the effect of copper alumina (Cu–Al2O3) nanoparticles in poly(pyrrole-co-indole) (PPy-co-PIN) on optical properties, thermal stability, alternating current (AC) conductivity, direct current (DC) conductivity and dielectric properties at different temperatures. Consistent distribution of Cu–Al2O3 nanoparticles within the copolymer was observed from field-emission scanning electron microscopy. The single absorption seen (range 270 nm) in the UV spectra was due to π–π* transitions in the copolymeric materials. The minimum optical bandgap energy was observed for 5 wt% nanocomposite. From thermogravimetric analysis graph, maximum thermal resistance was observed for 7 wt% nanocomposite. The AC conductivity and dielectric parameters were dependent on both temperature and nanofillers loading and the maximum properties were found for 5 wt% nanocomposite. The AC conductivity and dielectric constant of 5 wt% nanocomposites were increased by 4.5 and 3 times, respectively, in comparison to (PPy-co-PIN). The decrease in activation energy with an increase in the content of Cu–Al2O3 nanofillers and inverse dependence of Nyquist plot with temperature suggested semiconducting nature. The DC conductivity of copolymer was enhanced with encapsulation of Cu–Al2O3 nanoparticles and the change in conductivity was correlated with Scarisbrick, Bueche and McCullough models. The McCullough model was in compromise with experimental conductivity values as it considers interfacial interactions. The match in theoretical and experimental conductivity values was advocating the presence of an efficient conductive pathway. The excellent properties of (PPy-co-PIN)/Cu–Al2O3 nanocomposites can be exploited in concocting opto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. G. Sowmiya, G. Velraj, J. Mater. Sci. Mater. Electron. 31, 14287 (2020)

    Article  CAS  Google Scholar 

  2. S. Shenbagavalli, M. Muthuvinayagam, S. Jayanthi, S. Revathy, J. Mater. Sci. Mater. Electron. 32, 9998 (2021)

    Article  CAS  Google Scholar 

  3. H. Derakhshankhah, R. Mohammad-Rezaei, B. Massoumi, M. Abbasian, A. Rezaei, H. Samadian, M. Jaymand, J. Mater. Sci. Mater. Electron. 31, 10947 (2020)

    Article  CAS  Google Scholar 

  4. L. Zou, X. Duan, W. Zhou, H. Zhang, S. Chen, J. Chai, X. Liu, L. Shen, J. Xu, G. Zhang, J. Mater. Sci. Mater. Electron. 30, 7850 (2019)

    Article  CAS  Google Scholar 

  5. N. Sorkhishams, B. Massoumi, M. Saraei, S. Agbolaghi, J. Mater. Sci. Mater. Electron. 30, 21117 (2019)

    Article  CAS  Google Scholar 

  6. T. Lin, H. Yu, Y. Wang, L. Wang, S.Z. Vatsadze, X. Liu, Z. Huang, S. Ren, M.A. Uddin, B.U. Amin, S. Fahad, J. Mater. Sci. 56, 18093 (2021)

    Article  CAS  Google Scholar 

  7. M.T. Ramesan, K. Nushhat, K. Parvathi, T. Anilkumar, J. Mater. Sci. Mater. Electron. 30, 13719 (2019)

    Article  CAS  Google Scholar 

  8. C. Taşaltın, T.A. Türkmen, N. Taşaltın, S. Karakuş, J. Mater. Sci. Mater. Electron. 32, 10750 (2021)

    Article  CAS  Google Scholar 

  9. M. Vinitha, G. Velraj, J. Mater. Sci. Mater. Electron. 33, 6627 (2022)

    Article  CAS  Google Scholar 

  10. T. Das, B. Verma, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08220-x

    Article  Google Scholar 

  11. W. Wang, G. Ren, M. Wang, Y. Liu, S. Wu, J. Shen, J. Mater. Sci. Mater. Electron. 29, 5548 (2018)

    Article  CAS  Google Scholar 

  12. K. Amruth, K.M. Abhirami, S. Sankar, M.T. Ramesan, Inorg. Chem. Commun. 136, 109184 (2022)

    Article  CAS  Google Scholar 

  13. M. Zhang, Z. Yu, H. Yu, Polym. Bull. 77, 1049 (2020)

    Article  CAS  Google Scholar 

  14. S. Khademi, B. Pourabbas, K. Foroutani, Polym. Bull. 75, 4291 (2018)

    Article  CAS  Google Scholar 

  15. H. Gherras, A. Yahiaoui, A. Hachemaoui, A. Belfedal, A. Dehbi, A. Zeinert, Polym. Polym. Compos. 28, 265 (2019)

    Google Scholar 

  16. J. Simitzis, S. Soulis, D. Triantou, J. Appl. Polym. Sci. 125, 1928 (2012)

    Article  CAS  Google Scholar 

  17. Y. Wang, W.B. Ma, L. Guo, X.Z. Song, X.Y. Tao, L.T. Guo, H.L. Fan, Z.S. Liu, Y.B. Zhu, X.Y. Wei, J. Mater. Sci. Mater. Electron. 32, 6263 (2020)

    Article  CAS  Google Scholar 

  18. F. Köleli, D. Dündar, J. Appl. Polym. Sci. 109, 3044 (2008)

    Article  CAS  Google Scholar 

  19. K. Dhanalakshmi, R. Saraswathi, J. Mater. Sci. 36, 4107 (2001)

    Article  CAS  Google Scholar 

  20. M. Mansour Lakourj, R.-S. Norouzian, M. Esfandyar, S. Ghasemir, Mater. Sci. Eng. B 261, 114673 (2020)

    Article  CAS  Google Scholar 

  21. P. Jisha, M.S. Suma, M.V. Murugendrappa, S.R. Ananda, J. Mater. Sci. Mater. Electron. 32, 11243 (2021)

    Article  CAS  Google Scholar 

  22. M. Radoičić, G.C. Marjanović, Z.V. Šaponjić, M. Mitrić, Z. Konstantinović, M. Stoiljković, J.M. Nedeljković, J. Mater. Sci. 48, 5776 (2013)

    Article  CAS  Google Scholar 

  23. K. Yamani, R. Berenguer, A. Benyoucef, E. Morallón, J. Therm. Anal. Calorim. 135, 2089 (2019)

    Article  CAS  Google Scholar 

  24. M. Hassanpour, H.S. Hojaghan, M.S. Niasari, A.Y. Faal, J. Mater. Sci. Mater. Electron. 28, 14678 (2017)

    Article  CAS  Google Scholar 

  25. K. Parvathi, M.T. Ramesan, Polym. Compos. 43, 2628 (2022)

    Article  CAS  Google Scholar 

  26. A.N. Gheymasi, Y. Rajabi, E.N. Zare, Opt. Mater. 102, 109835 (2020)

    Article  CAS  Google Scholar 

  27. M. Golshekan, F. Shirini, J. Appl. Polym. Sci. 136, 48265 (2019)

    Article  CAS  Google Scholar 

  28. D. Lu, J. Jiang, L. Lu, X. Liao, K.M. Nesterov, R.K. Islamgaliev, R.Z. Valiev, K. Liu, J. Mater. Eng. Perform. 26, 2110 (2017)

    Article  CAS  Google Scholar 

  29. S. Sankar, A.A. Naik, T. Anilkumar, M.T. Ramesan, J. Appl. Polym. Sci. 137, 49145 (2020)

    Article  CAS  Google Scholar 

  30. M.A. Bekhti, M.S.E. Belardja, M. Lafjah, F. Chouli, A. Benyoucef, Polym. Compos. 42, 6 (2021)

    Article  CAS  Google Scholar 

  31. T. Sampreeth, M.A. Al-Maghrabi, B.K. Bahuleyan, M.T. Ramesan, J. Mater. Sci. 53, 591 (2018)

    Article  CAS  Google Scholar 

  32. Y. Cheng, C. Lü, Z. Lin, Y. Liu, C. Guan, H. Lü, B. Yang, J. Mater. Chem. 18, 4062 (2008)

    Article  CAS  Google Scholar 

  33. A.S. Hassanien, I.M.E. Radaf, A.A. Akl, J. Alloys Compd. 849, 156718 (2020)

    Article  CAS  Google Scholar 

  34. S. Sankar, K. Parvathi, M.T. Ramesan, High. Perform. Polym. 32, 719 (2020)

    Article  CAS  Google Scholar 

  35. A.V. Jadhav, C.G. Gulgas, A.D. Gudmundsdottir, Eur. Polym. J. 43, 2594 (2007)

    Article  CAS  Google Scholar 

  36. S. El-Gamal, M. Elsayed, Polymers 206, 122911 (2020)

    Article  CAS  Google Scholar 

  37. S. El-Gamal, A.M. Ismail, R. El-Mallawany, J. Mater. Sci. Mater. Electron. 26, 7544 (2015)

    Article  CAS  Google Scholar 

  38. K. Parvathi, B.K. Bahuleyan, M.T. Ramesan, J. Macromol. Sci. A 59, 466 (2022)

    Article  CAS  Google Scholar 

  39. M. Elsayed, S. El-Gamal, Phys. Scr. 97, 055814 (2022)

    Article  Google Scholar 

  40. R.D. Balikile, A.S. Roy, S.C. Nagaraju, G. Ramgopal, J. Mater. Sci. Mater. Electron. 28, 7368 (2017)

    Article  CAS  Google Scholar 

  41. R. Kandulna, R.B. Choudhary, R. Singh, J. Inorg. Organomet. Polym. 29, 730 (2019)

    Article  CAS  Google Scholar 

  42. M. Irfan, A. Shakoor, J. Inorg. Organomet. Polym. Mater. 30, 1287–1292 (2020)

    Article  CAS  Google Scholar 

  43. K. Suhailath, B.K. Bahuleyan, M.T. Ramesan, J. Inorg. Organomet. Polym. Mater. 31, 365 (2021)

    Article  CAS  Google Scholar 

  44. K. Suhailath, M. Thomas, M.T. Ramesan, Res. Chem. Int. 46, 2579 (2020)

    Article  CAS  Google Scholar 

  45. M.H. Najar, K. Majid, M.A. Dar, J. Mater. Sci. Mater. Electron. 28, 11243 (2017)

    Article  CAS  Google Scholar 

  46. S. Karoui, H. Chouaib, S. Kamoun, J. Phys. Org. Chem. 33, e4101 (2020)

    Article  CAS  Google Scholar 

  47. R. Moučka, N. Kazantseva, I. Sapurina, J. Mater. Sci. 53, 1995 (2018)

    Article  CAS  Google Scholar 

  48. N.J.S. Sohi, S. Bhadra, D. Khastgir, Carbon 49, 1349 (2011)

    Article  CAS  Google Scholar 

  49. K. Suhailath, M. Thomas, M.T. Ramesan, Polym. Polym. Compos. 29, 1200 (2021)

    CAS  Google Scholar 

  50. R.L. McCullough, Compos. Sci. Technol. 22, 3 (1985)

    Article  CAS  Google Scholar 

Download references

Funding

There is no funding available for the research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study conception and design. SS contributed to the writing, analysis, and methodology, while MTR contributed on the conception, resources, validation, and writing, review and editing.

Corresponding author

Correspondence to M. T. Ramesan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The research doesn’t involve studies with animals and human.

Consent of publication

The authors have read the content and approved for submission of this manuscript to Journal of Materials Science: Materials in Electronics.

Data availability

All data generated or analysed during this study are available with the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankar, S., Ramesan, M.T. Studies on optical properties, thermal stability and electrical conductivity of copper alumina nanoparticles-reinforced Poly(pyrrole-co-indole) for optoelectronic devices. J Mater Sci: Mater Electron 33, 21762–21777 (2022). https://doi.org/10.1007/s10854-022-08965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08965-5

Navigation