Skip to main content
Log in

Effects of surfactant additives during ball milling on the microstructural, electrical, and piezoelectric properties of 0.4Ba(Zr0.2Ti0.8)O3-0.6(Ba0.7Ca0.3)TiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, calcium barium zirconate titanate piezoelectric ceramics 0.4Ba(Zr0.2Ti0.8)O3- 0.6(Ba0.7Ca0.3)TiO3((1−x)BZT-xBCT, abbreviated as x BCZT, x = 0.6) were prepared by conventional solid state reaction method. Different surfactant additives (SDS, CTAB, PEG, and Tris–HCl, respectively) were added to the ball milling process before sintering. Meanwhile, the temperature and dwelling time during the sintering process were also systematically investigated. Their effects on the microstructural, electrical, and piezoelectric properties of the modified ceramics were investigated. It was found that with the Tris–HCl surfactant, the dispersion of the 0.6 BCZT ceramics was the best, and the average particle size was ~82 nm. By using the SDS surfactant, the ceramics showed the highest relative density, i.e., 97%. For the ferroelectric performances, the largest coercive field (Ec = 5.39 kV/cm) was observed in the sample using the SDS surfactant when the sample was sintered at 1300 °C for 6 h. For the dielectric performances, the largest dielectric constant (ε) was found to be 35,366.9 for the sample using CTAB surfactant and sintered at 1300 °C for 4 h. We discovered that CTAB-modified ceramics sintered at 1290 °C for 2 h had the highest maximum polarization Ps = 24.975 kV/cm and remnant polarization Pr = 8.200 kV/cm and sintered at 1300 °C for 4 h produced the highest piezoelectric constant d33 and dielectric constant of 94 pC/N and 35,366.7, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Research data policy and data availability statements

All data generated or analyzed during this study are included in this manuscript (and its supplementary information files) or can be available from the corresponding author on reasonable request.

References

  1. J. Lin, Y. Cao, K. Zhu et al., Ultrahigh energy harvesting properties in temperature-insensitive eco-friendly high-performance KNN-based textured ceramics. J. Mater. Chem. A 10(14), 7978–7988 (2022)

    Article  CAS  Google Scholar 

  2. C. Long, T. Li, H. Fan et al., Li-substituted K0.5Na0.5NbO3 based piezoelectric ceramics: crystal structures and the effect of atmosphere on electrical properties. J. Alloys Compd. 658, 839–847 (2016)

    Article  CAS  Google Scholar 

  3. L. Chen, H. Fan, Q. Li, Characterization of acceptor-doped (Ba, Ca) TiO3 “hard” piezoelectric ceramics for high-power applications. Ceram. Int. 43(7), 5579–5584 (2017)

    Article  CAS  Google Scholar 

  4. T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19(1), 113–126 (2007)

    Article  CAS  Google Scholar 

  5. H. Fan, H.E. Kim, Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate–lead zirconate titanate. J. Appl. Phys. 91(1), 317–322 (2002)

    Article  CAS  Google Scholar 

  6. X. Yan et al., High-performance lead-free ferroelectric BZT-BCT and its application in energy fields. J. Mater. Chem. C. 8, 13530–13556 (2020)

    Article  CAS  Google Scholar 

  7. J. Shi, H. Fan, X. Liu et al., Large electrostrictive strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7 Bi0.2)TiO3 solid solutions. J. Am. Ceram. Soc. 97(3), 848–853 (2014)

    Article  CAS  Google Scholar 

  8. J. Lin, Y. Wang, R. Xiong et al., Tailoring micro-structure of eco-friendly temperature-insensitive transparent ceramics achieving superior piezoelectricity. Acta Mater (2022). https://doi.org/10.1016/j.actamat.2022.118061

    Article  Google Scholar 

  9. L. Chen, H. Fan, M. Zhang et al., Phase structure, microstructure and piezoelectric properties of perovskite (K0.5Na0.5)0.95Li0.05NbO3–Bi0.5(K0.15Na0.85)0.5 TiO3 lead-free ceramics. J Alloys Compd. 492(1–2), 313–319 (2010)

    Article  CAS  Google Scholar 

  10. Z. Shi et al., Plate-like Ca3Co4O9: A novel lead-free piezoelectric material. Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2020.147928

    Article  Google Scholar 

  11. G. Clementi et al., LiNbO3 films – a low-cost alternative lead-free piezoelectric material for vibrational energy harvesters. Mech. Syst. Signal Process. 13(7), 1620–1627 (2021)

    Google Scholar 

  12. L. Kozielski et al., A large piezoelectric strain recorded in BCT ceramics obtained by a modified pechini method. Materials. 13(7), 1620–1627 (2020)

    Article  CAS  Google Scholar 

  13. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (2010)

    Article  Google Scholar 

  14. J. Rodel et al., Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Article  CAS  Google Scholar 

  15. Q.X. Hong et al., Improved upconversion photoluminescence properties of 0.965K0.4Na0.58Li0.02Nb0.96Sb0.04O3–0.035Bi0.5K0.5ZrO3: 0.25% Er/xIn lead-free piezoelectric ceramics with balanced piezoelectric coefficient and curie temperature. J. Mater. Sci. Mater. Electron. 29(24), 20923–20930 (2018)

    Article  CAS  Google Scholar 

  16. R. Zuo, J. Fu, Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3–LiTaO3–BaZrO3 lead-free ceramics. J. Am. Ceram. Soc. 94(5), 1467–1470 (2011)

    Article  CAS  Google Scholar 

  17. K. Wang, F.-Z. Yao, W. Jo, D. Gobeljic, V.V. Shvartsman, D.C. Lupascu, J.-F. Li, J. Rödel, Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv. Funct. Mater. 23(33), 4079–4086 (2013)

    Article  CAS  Google Scholar 

  18. K. Xu et al., Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv. Mater. 28(38), 8519–8523 (2016)

    Article  CAS  Google Scholar 

  19. M.H. Lee et al., High-performance lead-free piezoceramics with high curie temperatures. Adv. Mater. 27, 6976–6982 (2015)

    Article  CAS  Google Scholar 

  20. T. Takenaka, K.-i Maruyama, K. Sakata, (Bi0.5Na0.5)TiO3 BaTiO3 system for lead free piezoelectric ceramics. Jpn. J. Appl. Phys. 30(9B), 2236–2239 (1991)

    Article  CAS  Google Scholar 

  21. C. Min et al., Structure and electrical properties of (Na0.5Bi0.5)1-xBaxTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 28(4), 843–849 (2008)

    Article  CAS  Google Scholar 

  22. S.T. Zhang et al., Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91(11), 112906 (2007)

    Article  CAS  Google Scholar 

  23. L. Tan et al., Excellent piezoelectric performance of KNNS-based lead-free piezoelectric ceramics through powder pretreatment by hydrothermal method. J. Alloys Compd (2021). https://doi.org/10.1016/j.jallcom.2021.159770

    Article  Google Scholar 

  24. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  Google Scholar 

  25. Y. Zhang, H. Sun, W. Chen, A brief review of Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 based lead-free piezoelectric ceramics: past, present and future perspectives. J. Phys. Chem. Solids 114, 207–219 (2018)

    Article  CAS  Google Scholar 

  26. W. Bai et al., Phase transition behavior and enhanced electromechanical properties in (Ba0.85Ca0.15)(ZrxTi1-x)O3 lead-free piezoceramics. Ceram. Int. 42(2), 3598–3608 (2016)

    Article  CAS  Google Scholar 

  27. M. Acosta et al., Origin of the large piezoelectric activity in (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics. Phys. Rev. B. (2015). https://doi.org/10.1103/PhysRevB.91.104108

    Article  Google Scholar 

  28. D.S. Keeble et al., Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3) of. Appl. Phys. Lett. 102(9), 092903 (2013)

    Article  CAS  Google Scholar 

  29. A. Ha et al., The effect of Zn2+ and Nb5+ substitution on structural, dielectric, electrocaloric properties, and energy storage density of Ba0.95Ca0.05Ti0.95Zr0.05O3 ceramics. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.160355

    Article  Google Scholar 

  30. R.L. Nayak et al., Enhanced dielectric, thermal stability, and energy storage properties in compositionally engineered lead-free ceramics at morphotropic phase boundary. Ceram. Int. 47, 17220–17233 (2021)

    Article  CAS  Google Scholar 

  31. R. Verma et al., Structural, optical, and electrical properties of vanadium-doped, lead-free BCZT ceramics. J Alloys Compd (2021). https://doi.org/10.1016/J.JALLCOM.2021.159520

    Article  Google Scholar 

  32. B. Rva et al., Structural, morphological, and optical properties of strontium doped lead-free BCZT ceramics—sciencedirect. Ceram. Int. 47, 15442–15457 (2021)

    Article  CAS  Google Scholar 

  33. S.R. Reddy et al., Ferroelectric and nano-mechanical properties of the chemical solution deposited lead-free BCZT films. Mater. Sci. Eng.: B. (2021). https://doi.org/10.1016/j.mseb.2020.115037

    Article  Google Scholar 

  34. D. Drdlik et al., A comparative study of direct and indirect evaluation of piezoelectric properties of electrophoreticaly deposited (Ba, Ca) (Zr, Ti)O3 lead-free piezoceramics. Ceram. Int. 47(2), 2034–2042 (2020)

    Article  CAS  Google Scholar 

  35. Q. Zhang et al., Controllable synthesis of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 submicron sphere by hydroxide Co-precipitation method. Ceram. Int. 46, 28285–28291 (2020)

    Article  CAS  Google Scholar 

  36. E. Khomyakova et al., On the formation mechanism of Ba0.85Ca0.15Zr0.1Ti0.9O3 thin films by aqueous chemical solution deposition. J. Eur. Ceram. Soc. 40, 5376–5383 (2020)

    Article  CAS  Google Scholar 

  37. B. Nan et al., Effect of lithium carbonate on the sintering, microstructure, and functional properties of sol–gel-derived Ba0.85Ca0.15Zr0.1Ti0.9O3 piezoceramics. J. Mater. Res. 36(5), 1105–1113 (2021)

    Article  CAS  Google Scholar 

  38. H. Mezzourh et al., Enhancing the dielectric, electrocaloric and energy storage properties of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics prepared via sol-gel process. Phys. B: Phys. Condens Matter. (2020). https://doi.org/10.1016/j.physb.2020.412760

    Article  Google Scholar 

  39. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001)

    Article  CAS  Google Scholar 

  40. R.Z. Zuo et al., Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89(6), 2010–2015 (2006)

    Article  CAS  Google Scholar 

  41. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: A review. Int Mater. Rev. 53(2), 57–90 (2008)

    Article  CAS  Google Scholar 

  42. G.D. Parfitt, Dispersion of Powders in Liquids, 3rd edn. (Applied Science Publishers, London, 1981), pp. 30–37

  43. G. Hou, Z. Wang, F. Zhang, Sintering behavior and microwave dielectric properties of (1–x)CaTiO3−xLaAlO3 ceramics. J. Rare Earths. 29(2), 160–163 (2011)

    Article  CAS  Google Scholar 

  44. A. James et al., Chemical synthesis, structural, thermo-physical and electrical property characterization of PLZT ceramics. J Alloys Compd. 496(1–2), 624–627 (2016)

    Google Scholar 

  45. J.F. Ihlefeld et al., Scaling effects in perovskite ferroelectrics: fundamental limits and process-structure-property relations. J. Am. Ceram. Soc. 99(8), 2537 (2016)

    Article  CAS  Google Scholar 

  46. J. Li et al., Microstructure and dielectric properties of (Nb + In) Co-doped rutile TiO2 ceramics. J. Appl. Phys. 116(7), 61 (2014)

    Google Scholar 

  47. G. Arlt, D. Hennings, G. De With, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58(4), 1619–1625 (1985)

    Article  CAS  Google Scholar 

  48. X.H. Wang, R.Z. Chen, Z.L. Gui et al., The grain size effect on dielectric properties of BaTiO3 based ceramics. Mater. Sci. Eng., B 99(1–3), 199–202 (2003)

    Article  CAS  Google Scholar 

  49. Z.M. Tian et al., Enhanced multiferroic properties in Ti-doped Bi2Fe4O9 ceramics. J. Appl. Phys. 108(6), 64110–64110 (2010)

    Article  CAS  Google Scholar 

  50. P.A. Fuierer, R.E. Newnham, La2Ti2O7 ceramics. J. Am. Ceram. Soc. 74(11), 2876–2881 (1991)

    Article  CAS  Google Scholar 

  51. C. Carbone, M. Benwadih, G. D’Ambrogio et al., Influence of matrix and surfactant on piezoelectric and dielectric properties of screen-printed BaTiO3/PVDF composites. Polymers 13(13), 2166 (2021)

    Article  CAS  Google Scholar 

  52. L. Chen, H. Fan, S. Zhang, Investigation of MnO2-doped (Ba, Ca)TiO3 lead-free ceramics for high power piezoelectric applications. J. Am. Ceram. Soc. 100(8), 3568–3576 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51772054).

Author information

Authors and Affiliations

Authors

Contributions

JZ and YY contributed to conceptualization writing—original draft preparation; JZ, LL, WW, and YX conceived the methodology; JZ and YX helped in experiments; LL, WW, and YX were in involved in characterization; ; JZ, YY, and YX contributed to writing—review and editing; YY performed supervision; WW was involved in project administration; YY helped in funding acquisition. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yingbang Yao.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Xu, Y., Li, L. et al. Effects of surfactant additives during ball milling on the microstructural, electrical, and piezoelectric properties of 0.4Ba(Zr0.2Ti0.8)O3-0.6(Ba0.7Ca0.3)TiO3 ceramics. J Mater Sci: Mater Electron 33, 21713–21726 (2022). https://doi.org/10.1007/s10854-022-08959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08959-3

Navigation