Skip to main content
Log in

Dielectric properties of (Ca,Sr)(Zr,Ti)O3 ceramics sintered in a reducing atmosphere with Li-B-Si-Ca-Mn glass addition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is critical to find an appropriate sintering aid to reduce the sintering temperature of the temperature compensated (Ca,Sr)(Zr,Ti)O3 (CSZT) ceramics while manufacturing multilayer ceramic capacitors (MLCCs) with copper electrodes. The effects of the addition of lithium borosilicate glass on the microstructure and dielectric properties of \(({Ca}_{0.7}{Sr}_{0.3})({Zr}_{0.97}{Ti}_{0.03}){O}_{3}\) sintered in a reducing atmosphere have been reported. However, the relationships between the defect chemistry and the dielectric properties of Li-B-Si based glass added to CSZT ceramics have not been clarified. This study investigated the Li-B-Si-Ca-Mn (LBSCM) glass addition effects on the dielectric relaxation and AC impedance of sintered CSZT ceramics sintered in a reducing atmosphere based on the defect chemistry. It was observed that the dielectric relaxation peaks and AC impedance are intimately related to the defect associates \(V_o^{ \cdot \cdot } - Li^{\prime}_{zr}\). The CSZT ceramics added with LBSCM glass can be densified at temperatures below 1000 °C and have lower dielectric losses, making them a promising choice for use as a dielectric ceramic in copper electrodes MLCCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. W.J. Lee, A. Wakahara, B.H. Kim, Ceram. Int. 31, 521–524 (2005)

    Article  CAS  Google Scholar 

  2. S. Sato, Y. Nakano, A. Sato, T. Nomura, Jpn. J. Appl. Phys. 36, 6016–6020 (1997)

    Article  CAS  Google Scholar 

  3. H. Kishi, Y. Mizuno, H. Chazono, Jpn. J. Appl. Phys. 42, 1–15 (2003)

    Article  CAS  Google Scholar 

  4. A.E. Paladino, J. Am. Ceram. Soc. 48, 476–478 (1965)

    Article  CAS  Google Scholar 

  5. W.S. Lee, C.Y. Su, Y.C. Lee, S.P. Lin, T. Yang, Jpn. J. Appl. Phys. 45, 5853–5858 (2006)

    Article  CAS  Google Scholar 

  6. C. Ang, Z. Yu, L. Cross, Phys. Rev. B 62, 228–236 (2000)

    Article  Google Scholar 

  7. M. Chen, J.L. Liao, H.I. Hsiang, Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.06.107

    Article  Google Scholar 

  8. N. Ma, B.P. Zhang, W.G. Yang, J. Electroceram. 28, 275–280 (2012)

    Article  CAS  Google Scholar 

  9. Q. Lou, X. Shi, X. Ruan, J. Zeng, Z. Man, L. Zheng, C.H. Park, G. Li, J. Am. Ceram. Soc. 101, 3597–3604 (2018)

    Article  CAS  Google Scholar 

  10. L. Wu, Y. Li, S. Li, Z. Li, G. Tang, W. Qi, L. Xue, X. Ge, L. Ding, AIP Adv. 5, 097210 (2015)

    Article  Google Scholar 

  11. J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Phys. Chem. Chem. Phys. 2, 1319–1324 (2000)

    Article  CAS  Google Scholar 

  12. T.F. Zhang, X.G. Tang, Q.X. Liu, S.G. Lu, Y.P. Jiang, X.X. Huang, Q.F. Zhou, AIP Adv. 4, 107141 (2014)

    Article  Google Scholar 

  13. S.H. Cha, Y.H. Han, J. Appl. Phys. 100, 104102 (2006)

    Article  Google Scholar 

  14. L. Zhang, H. Hao, S. Zhang, M.T. Lanagan, Z. Yao, Q. Xu, J. Xie, J. Zhou, M. Cao, H. Liu, J. Am. Ceram. Soc. 100, 4638–4648 (2017)

    Article  CAS  Google Scholar 

  15. I. Coondoo, N. Panwar, R. Vidyasagar, A.L. Kholkin, Phys. Chem. Chem. Phys. 18, 31184–31206 (2016)

    Article  CAS  Google Scholar 

  16. W.L. Warren, K. Vanheusden, D. Dimos, G.E. Pike, B.A. Tuttle, J. Am. Ceram. Soc. 79, 536–538 (1996)

    Article  CAS  Google Scholar 

  17. K. Shan, F. Zhai, Z.-Z. Yi, X.-T. Yin, D. Dastan, F. Tajabadi, A. Jafari, S. Abbasi, Surf. Interfaces 23, 100905 (2021)

    Article  CAS  Google Scholar 

  18. S.C. Hwang, G.M. Choi, Solid State Ionics 179, 1042–1045 (2008)

    Article  CAS  Google Scholar 

  19. S.C. Hwang, G.M. Choi, J. Europ. Ceram. Soc. 25, 2609–26125 (2005)

    Article  CAS  Google Scholar 

  20. A. Dwivedi, A.N. Cormack, J. Solid State Chem. 79, 218–231 (1989)

    Article  CAS  Google Scholar 

  21. Z. He, M. Cao, L. Zhou, L. Zhang, J. Xie, S. Zhang, J. Qi, H. Hao, Z. Yao, Z. Yu, J. Am. Ceram. Soc. 101, 5089–5097 (2018)

    Article  CAS  Google Scholar 

  22. P. Sarkar, P.S. Nicholson, J. Am. Ceram. Soc. 12, 1441–1449 (1989)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Ministry of Science and Technology, Taiwan [110-2622-8-006 -017 -SB] for supporting this study.

Funding

Ministry of Science and Technology (MOST) in Taiwan (110-2622-8-006-017-SB).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HIH; methodology, JLL, and MC; validation, MC, and JLL; formal analysis, JLL; investigation, JLL; resources, HIH.; data curation, JLL; writing—original draft preparation, HIH; writing—review and editing, HIH and MC; visualization, HIH; supervision, HIH and MC; project administration, HIH; funding acquisition, HIH All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hsing-I Hsiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 474 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Liao, JL. & Hsiang, HI. Dielectric properties of (Ca,Sr)(Zr,Ti)O3 ceramics sintered in a reducing atmosphere with Li-B-Si-Ca-Mn glass addition. J Mater Sci: Mater Electron 33, 21638–21646 (2022). https://doi.org/10.1007/s10854-022-08952-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08952-w

Navigation