Skip to main content

Advertisement

Log in

Low temperature sintering and energy storage properties of 0.8Ba0.2Sr0.8TiO3–0.2Bi(Mg0.5Zr0.5)O3 ceramic with additive of SrO–B2O3–ZnO glass

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Glass additive SrO–B2O3–ZnO (SBZ) is used to decrease the sintering temperature of 0.8Ba0.2Sr0.8TiO3–0.2Bi(Mg0.5Zr0.5)O3 (BST-BMZ) ceramic and improve ceramic energy storage performance. The effects of glass content on the sintering temperature, crystal structure, microstructure, dielectric property, and energy storage performance of BST-BMZ ceramics are investigated. Benefiting from the good wetting behavior of SBZ glass melt and BST-BMZ ceramic, the addition of SBZ glass on the BST-BMZ matrix facilitates achievement of low temperature sintering process, and the sintering temperature reduces from 1300 ºC to 1100 ºC for BST-BMZ + 2 wt% SBZ ceramic. While, the decrease of average grain size and superior densification resulting from the low sintering temperature, are also beneficial to the high breakdown strength. The BST-BMZ + 2 wt% SBZ ceramic achieves the optimum comprehensive properties with the maximum energy storage density of 2.13 J/cm3 and the remarkable efficiency of 94.1%. The addition of SBZ glass reduces the sintering temperature of BST-BMZ ceramic and improves the energy storage performance. The results indicate that the BST-BMZ + 2 wt% SBZ ceramic is a potential dielectric material for multilayer ceramic capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. F.Z. Yao, Q.B. Yuan, Q. Wang, H. Wang, Multiscale structural engineering of dielectric ceramics for energy storage applications: from bulk to thin films. Nanoscale 12, 17165–17184 (2020). https://doi.org/10.1039/D0NR04479B

    Article  CAS  Google Scholar 

  2. J. Jiang, X.J. Meng, L. Li, S. Guo, M. Huang, J. Zhang, J. Wang, X.H. Hao, H.G. Zhu, S.T. Zhang, Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering. Energy. Storage. Mater 43, 383–390 (2021). https://doi.org/10.1016/j.ensm.2021.09.018

    Article  Google Scholar 

  3. L.L. Li, B. Zhou, H.B. Yuan, F. Wen, Z. Xu, G.F. Wang, Effect of BaTiO3 particles with different shape on electrical properties of (Bi0.5Na0.5)TiO3 piezoceramics. Ceram. Int. 45, 1960–1968 (2019). https://doi.org/10.1016/j.ceramint.2018.10.090

    Article  CAS  Google Scholar 

  4. W.W. Ping, W.F. L, S.T. L, Enhanced energy storage property in glass-added Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3 ceramics and the charge relaxation. Ceram. Int. 45, 11388–11394 (2019). https://doi.org/10.1016/j.ceramint.2019.03.003

    Article  CAS  Google Scholar 

  5. P.Y. Zhao, Z.M. Cai, L.W. Wu, C.Q. Zhu, L.T. Li, X.H. Wang, Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. 10, 1153–1193 (2021). https://doi.org/10.1007/s40145-021-0516-8

  6. S.N. Das, Relaxor (Pb0.7Bi0.3)(Mg0.231Nb0.462Fe0.3)O3 electronic compound for magnetoelectric field sensor applications. J. Appl. Phys. 128, 114101 (2020). https://doi.org/10.1063/5.0014110

    Article  CAS  Google Scholar 

  7. M.J. Pan, C.A. Randall, A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag 26, 44–50 (2010). https://doi.org/10.1109/MEI.2010.5482787

    Article  CAS  Google Scholar 

  8. Y. Wang, Z.Y. Shen, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Optimization of energy storage density and efficiency in BaxSr1-xTiO3 (x ≤ 0.4) paraelectric ceramics. Ceram. Int. 41, 8252–8256 (2015). https://doi.org/10.1016/j.ceramint.2015.02.126

    Article  CAS  Google Scholar 

  9. M.S. Zeng, J.S. Liu, H.Q. Li, S.R. Zhang, W.L. Zhang, High energy storage efficiency and fast discharge property of temperature stabilized Ba0.4Sr0.6TiO3-Bi(Mg0.5Ti0.5)O3 ceramics. Ceram. Int. 48, 23518–23526 (2022). https://doi.org/10.1016/j.ceramint.2022.04.348

    Article  CAS  Google Scholar 

  10. C.L. Diao, H.X. Liu, H. Hao, M.H. Cao, Z.H. Yao, Effect of SiO2 additive on dielectric response and energy storage performance of Ba0.4Sr0.6TiO3 ceramics. Ceram. Int. 42, 12639–12643 (2016). https://doi.org/10.1016/j.ceramint.2016.04.169

    Article  CAS  Google Scholar 

  11. Z. Song, H.X. Liu, M.T. Lanagan, S.J. Zhang, H. Hao, M.H. Cao, Z.H. Yao, Z.X. Fu, K. Huang, Thermal annealing effects on the energy storage properties of BST ceramics. J. Am. Ceram. Soc. 100, 3550–3557 (2017). https://doi.org/10.1111/jace.14903

    Article  CAS  Google Scholar 

  12. Z. Song, H.X. Liu, S.J. Zhang, Z.J. Wang, Y.T. Shi, H. Hao, M.H. Cao, Z.H. Yao, Z.Y. Yu, Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J. Eur. Ceram. Soc. 34, 1209–1217 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.039

    Article  CAS  Google Scholar 

  13. Z.J. Wang, M.H. Cao, Z.H. Yao, Z. Song, G.Y. Li, W. Hu, H. Hao, H.X. Liu, Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceram. Int. 40, 14127–14132 (2014). https://doi.org/10.1016/j.ceramint.2014.05.147

    Article  CAS  Google Scholar 

  14. Z.H. Yao, Q. Luo, G.F. Zhang, H. Hao, M.H. Cao, H.X. Liu, Improved energy-storage performance and breakdown enhancement mechanism of Mg-doped SrTiO3 bulk ceramics for high energy density capacitor applications. J. Mater. Sci. Mater. El 28, 11491–11499 (2017). https://doi.org/10.1007/s10854-017-6945-z

    Article  CAS  Google Scholar 

  15. W. Wang, L.Y. Zhang, C. Li, D.O. Alikin, V.Y. Shur, X.Y. Wei, F. Gao, H.L. Du, L. Jin, Effective strategy to improve energy storage properties in lead-free (Ba0.8Sr0.2)TiO3-Bi(Mg0.5Zr0.5)O3 relaxor ferroelectric ceramics. Chem. Eng. J. 446, 137389 (2022). https://doi.org/10.1016/j.cej.2022.137389

    Article  CAS  Google Scholar 

  16. X.W. Jiang, H. Hao, S.J. Zhang, J.H. Lv, M.H. Cao, Z.H. Yao, H.X. Liu, Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J. Eur. Ceram. Soc. 39, 1103–1109 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.025

    Article  CAS  Google Scholar 

  17. A. Zed, S.J. Milne, Temperature-stable dielectric properties from – 20 ºC to 430 ºC in the system BaTiO3-Bi(Mg0.5Zr0.5)O3. J. Eur. Ceram. Soc. 34, 3159–3166 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.04.047

    Article  CAS  Google Scholar 

  18. A. Young, G. Hilmas, S.C. Zhang, R.W. Schwartz, Effect of liquid-phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc. 90, 1504–1510 (2007). https://doi.org/10.1111/j.1551-2916.2007.01637.x

    Article  CAS  Google Scholar 

  19. Y.R. Wang, Y.P. Pu, Y.F. Cui, Y. Shi, H.Y. Zheng, Enhanced energy storage density of Ba0.4Sr0.6TiO3 ceramics with additive of Bi2O3-B2O3-ZnO glass. Mater. Lett. 201, 203–206 (2017). https://doi.org/10.1016/j.matlet.2017.05.007

    Article  CAS  Google Scholar 

  20. P. Tripathi, P. Kumari, V.K. Mishra, R. Singh, S.P. Singh, D. Kumar, Effect of PbO-B2O3-BaO-SiO2 glass additive on dielectric properties of Ba0.5Sr0.5TiO3 ceramics for radio-frequency applications. J. Phys. Chem. Solids 127, 60–67 (2019). https://doi.org/10.1016/j.jpcs.2018.12.006

    Article  CAS  Google Scholar 

  21. X. Chen, Y. Tang, X.K. Bo, J. Song, J.Z. Luo, Microstructures and energy storage properties of Sr0.5Ba0.5Nb2O6 ceramics with SrO–B2O3–SiO2 glass addition. J. Mater. Sci. Mater. El 29, 17563–17570 (2018). https://doi.org/10.1007/s10854-018-9858-6

    Article  CAS  Google Scholar 

  22. H.Y. Wang, M.H. Cao, M. Liu, H. Hao, Z.H. Yao, H.X. Liu, Enhanced energy storage properties of fine-crystalline Ba0.4Sr0.6TiO3 ceramics by coating powders with B2O3–Al2O3–SiO2. J. Alloy Compd. 826, 153891 (2020). https://doi.org/10.1016/j.jallcom.2020.153891

    Article  CAS  Google Scholar 

  23. T. Wang, L. Jin, L.L. Shu, Q.Y. Hu, X.Y. Wei, Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO-B2O3-SiO2-Na2CO3-K2CO3 glass. J. Alloy Compd. 617, 399–403 (2014). https://doi.org/10.1016/j.jallcom.2014.08.038

    Article  CAS  Google Scholar 

  24. H.J. Lee, S.W. Kim, S.S. Ryu, Sintering behavior of aluminum nitride ceramics with MgO-CaO-Al2O3-SiO2 glass additive. Int. J. Refract. Met. H 53, 46–50 (2015). https://doi.org/10.1016/j.ijrmhm.2015.04.013

    Article  CAS  Google Scholar 

  25. P.S. Anjana, M.T. Sebastian, Microwave dielectric properties and low-temperature sintering of cerium oxide for LTCC applications. J. Am. Ceram. Soc. 92, 96–104 (2009). https://doi.org/10.1111/j.1551-2916.2008.02756.x

    Article  CAS  Google Scholar 

  26. A.I. Borhan, M. Gromada, G.G. Nedelcu, L. Leontie, Influence of (CoO, CaO, B2O3) additives on thermal and dielectric properties of BaO-Al2O3-SiO2 glass-ceramic sealant for OTM applications. Ceram. Int. 42, 10459–10468 (2016). https://doi.org/10.1016/j.ceramint.2016.03.199

    Article  CAS  Google Scholar 

  27. J. Song, L. Han, T.Y. Liu, Q. Feng, Z.W. Luo, A.X. Lu, Microstructures and energy storage properties of BSN ceramics with crystallizable glass addition. J. Mater. Sci. Mater. El 29, 5934–5943 (2018). https://doi.org/10.1007/s10854-018-8566-6

    Article  CAS  Google Scholar 

  28. H.B. Yang, F. Yan, Y. Lin, T. Wang, Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. J. Eur. Ceram. Soc. 38, 1367–1373 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.058

    Article  CAS  Google Scholar 

  29. Z.Y. Shen, Y. Wang, Y.X. Tang, Y.Y. Yu, W.Q. Luo, X.C. Wang, Y.M. Li, Z.M. Wang, F.S. Song, Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. J. Materiomics 5, 641–648 (2019). https://doi.org/10.1016/j.jmat.2019.06.003

    Article  Google Scholar 

  30. H.T. Yu, L. He, M.S. Zeng, J.S. Liu, E.Z. Li, X.H. Zhou, S.R. Zhang, Low temperature sintering of Zn1.8SiO3.8 dielectric ceramics containing 3ZnO-2B2O3 glass. Mater. Lett. 179, 150–153 (2016). https://doi.org/10.1016/j.matlet.2016.05.091

    Article  CAS  Google Scholar 

  31. Q.Y. Hu, T. Wang, L.Y. Zhao, L. Jin, Z. Xu, X.Y. Wei, Dielectric and energy storage properties of BaTiO3-Bi(Mg1/2Ti1/2)O3 ceramic: influence of glass addition and biasing electric field. Ceram. Int. 43, 35–39 (2017). https://doi.org/10.1016/j.ceramint.2016.08.005

    Article  CAS  Google Scholar 

  32. L.M. Chen, X.H. Hao, Q.W. Zhang, S.L. An, Energy-storage performance of PbO-B2O3-SiO2 added (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric ceramics prepared by microwave sintering method. J. Mater. Sci. Mater. El 27, 4534–4540 (2016). https://doi.org/10.1007/s10854-016-4328-5

    Article  CAS  Google Scholar 

  33. S.N. Das, S.K. Pradhan, S. Bhuyan, R.N.P. Choudhary, Capacitive, resistive and conducting characteristics of bismuth ferrite and lead magnesium niobate based relaxor electronic system. J. Mater. Sci. Mater. El 28, 18913–18928 (2017). https://doi.org/10.1007/s10854-017-7845-y

    Article  CAS  Google Scholar 

  34. S.N. Das, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, P. DAS, Modification of relaxor and impedance spectroscopy properties of lead magnesium niobate by bismuth ferrite. J. Mater. Sci. Mater. El 46, 1637–1649 (2017). https://doi.org/10.1007/s11664-016-5207-9

    Article  CAS  Google Scholar 

  35. G. Liu, Y. Wang, G.Y. Han, J.H. Gao, L.J. Yu, M.Y. Tang, Y. Li, J.Z. Hu, L. Jin, Y. Yan, Enhanced electrical properties and energy storage performances of NBT-ST Pb-free ceramics through glass modification. J. Alloy Compd. 836, 154961 (2020). https://doi.org/10.1016/j.jallcom.2020.154961

    Article  CAS  Google Scholar 

  36. T. Wei, K. Liu, P.Y. Fan, D.J. Lu, B.H. Ye, C.R. Zhou, H.B. Yang, H. Tan, D. Salamon, B. Nan, H.B. Zhang, Novel NaNbO3-Sr0.7Bi0.2TiO3 lead-free dielectric ceramics with excellent energy storage properties. Ceram. Int. 47, 3713–3719 (2021). https://doi.org/10.1016/j.ceramint.2020.09.228

    Article  CAS  Google Scholar 

  37. T. Wu, Y.P. Pu, T.T. Zong, P. Gao, Microstructures and dielectric properties of Ba0.4Sr0.6TiO3 ceramics with BaO-TiO2-SiO2 glass-ceramics addition. J. Alloy Compd. 584, 461–465 (2014). https://doi.org/10.1016/j.jallcom.2013.09.072

    Article  CAS  Google Scholar 

  38. Z.Y. Shen, Y.M. Li, W.Q. Luo, Z.M. Wang, X.Y. Gu, R.H. Liao, Structure and dielectric properties of NdxSr1-xTiO3 ceramics for energy storage application. J. Mater. Sci. Mater. El 24, 704–710 (2013). https://doi.org/10.1007/s10854-012-0798-2

    Article  CAS  Google Scholar 

  39. Z.Y. Shen, Y.Y. Yu, Y. Wang, L. Zhang, W.Q. Luo, Z.M. Wang, Y.M. Li, Reduced high temperature dielectric loss in BSB glass modified Ba0.3Sr0.7TiO3 ceramics for energy storage. J. Mater. Sci. Mater. El 29, 1093–1097 (2018). https://doi.org/10.1007/s10854-017-8010-3

    Article  CAS  Google Scholar 

  40. L.T. Yang, X. Kong, F. Li, H. Hao, Z.X. Cheng, H.X. Liu, J.F. Li, S.J. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog Mater. Sci. 102, 72–108 (2019). https://doi.org/10.1016/j.pmatsci.2018.12.005

    Article  CAS  Google Scholar 

  41. G. Liu, Y. Li, B. Guo, M.Y. Tang, Q. Li, J. Dong, L.J. Yu, K. Yu, Y. Yan, D.W. Wang, L.Y. Zhang, H.B. Zhang, Z.B. He, L. Jin, Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem. Eng. J. 398, 125625 (2020). https://doi.org/10.1016/j.cej.2020.125625

    Article  CAS  Google Scholar 

  42. H.S. Wang, Y.C. Liu, T.Q. Yang, S.J. Zhang, Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv. Funct. Mater. 29, 1807321 (2019). https://doi.org/10.1002/adfm.201807321

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by HX and PL. Revised it critically for important intellectual content by JL and MZ. The first draft of the manuscript was written by HX and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jingsong Liu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Liu, J., Luo, P. et al. Low temperature sintering and energy storage properties of 0.8Ba0.2Sr0.8TiO3–0.2Bi(Mg0.5Zr0.5)O3 ceramic with additive of SrO–B2O3–ZnO glass. J Mater Sci: Mater Electron 34, 1048 (2023). https://doi.org/10.1007/s10854-023-10352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10352-7

Navigation